硅烯是硅原子排列成的蜂窝状翘曲结构。因其具有和石墨烯相似的几何构型,理论计算发现硅烯的能带结构与石墨烯类似,在布里渊区的顶角(K点)也存在狄拉克锥,载流子为无质量的狄拉克费米子。由于硅原子比碳原子重,硅烯具有更强的自旋轨道耦合相互作用,理论预言有可能在硅烯中观测到量子自旋霍尔效应和量子反常霍尔效应。理论计算还发现,通过外加电场或碱金属原子吸附等方式,可以调节硅烯狄拉克点处能隙的大小。然而,由于化学性质较为活泼,硅烯在空气中极容易被氧化。L. Tao等人在2015年首次成功制备出硅烯晶体管器件并测量了硅烯的载流子迁移率,然而,由于硅烯在空气中的不稳定性,他们制备的器件只存活了两分钟 [Nat. Nanotechnol., 2015, 10, 227]。另一方面,基于硅烯的异质结构也被理论预言具有优异的物理化学性质,但是由于硅在自然界中不存在类似石墨的层状体材料,硅烯并不能通过传统的机械剥离方式得到,而基于硅烯的异质结构体系也就不能通过传统的“堆叠”方式制备。因此,如何制备稳定的硅烯和基于硅烯的二维异质结构目前在实验上面临巨大挑战。

图1. 在石墨烯/Ru(0001)界面处的硅烯结构形成示意图。在退火过程中,沉积的Si原子插入到石墨烯和Ru基底之间。沉积量较小时,Si原子在石墨烯摩尔斑图atop区域(隆起的区域)下方形成蜂窝状硅烯纳米薄片。随着Si沉积量的增加,插层结构形成硅烯单层结构。

  近年来,中国科学院物理研究所/北京凝聚态物理国家研究中心纳米物理与器件实验室高鸿钧院士领导的研究团队在石墨烯及类石墨烯二维原子晶体材料的制备、物性与应用基础等方面开展研究,取得了一系列居国际前沿的研究成果。在过去十多年间,他们采用分子束外延生长方法, 1) 制备出了大面积、高质量的石墨烯及类石墨烯二维原子晶体材料,如:外延石墨烯 [Chin. Phys. 16, 3151 (2007), Adv. Mater. 21, 2777 (2009)]、硅烯 [Nano Lett. 13, 685 (2013),Nano Lett. 17, 1161 (2017)]、锗烯 [Nano Lett. 13, 4671 (2013)]、铪烯 [Adv. Mater. 26, 4820 (2014)]、二硒化铂与铜硒二维原子晶体 [Nano Lett. 15, 4013 (2015), Nat. Mater., 16, 717 (2017)]等; 2) 实现了石墨烯的多种单质元素的插层 [Appl. Phys. Lett. 100, 093101 (2012), Appl. Phys. Lett. 99, 163107 (2011)]; 3) 揭示了单晶表面上石墨烯插层的普适机制 [J. Am. Chem. Soc. 137(22),7099 (2015)]等。这一系列工作为探索新型二维材料和构筑二维材料异质结构奠定了基础。

  最近,该研究团队将STM实验与理论计算相结合,在构筑单层石墨烯“保护“的硅烯及其异质结构的研究中取得了新的进展。他们首先在Ru(0001)衬底上生长石墨烯层,并在其下插入硅原子以构筑硅烯。同时,他们通过控制硅的量,在石墨烯下制备不同类型的硅烯纳米结构并通过扫描隧道显微镜(STM)成像分析。在低剂量下,在石墨烯摩尔图案的顶部(atop)区域下周期性排列的硅烯纳米片段阵列是一种新型的本征图案化的二维材料;而在较高剂量下,插入的Si形成硅烯单层。在更高的Si剂量下,在石墨烯和基底之间则形成多层硅烯。这一系列过程得到了第一性原理计算的证实。将所制备的石墨烯/硅烯异质结构在空气中暴露两周,没有显示出可观察到的损坏,表明了其良好的空气稳定性。异质结构的垂直输运特性表现出了整流效应。

  相关工作发表在《Advanced Materials》上。该工作得到了科技部(2013CBA01600, 2016YFA020230, 2018FYA0305800)、国家自然科学基金委(61390501, 61474141, 11604373)和中国科学院的资助。

图2. 硅烯纳米薄片阵列的STM图像及理论模拟。(a)STM形貌显示Si插层后的石墨烯/Ru(0001)结构。插图为(a)的放大图像。(b,c)分别为在-0.5 V和-0.1 V偏压下在相同区域得到的硅烯和石墨烯的原子级分辨率图像。(d)在石墨烯摩尔晶格atop区域下方插层26个Si原子组成的硅烯薄片的原子结构模型。(e,f)分别为(d)中的模型在-0.5 eV和-0.1 eV下通过第一性原理计算模拟的STM图像,与实验观测到的一致。

图3. 单层硅烯的STM图像及理论模拟。(a)石墨烯/硅烯异质结构生长在Ru(0001)表面的STM图像。(b)表层石墨烯晶格的原子分辨率图像。(c)(7×7)Ru(0001)/(√21×√21)硅烯/(8×8)石墨烯异质结构模型的顶视图和侧视图(超晶格元胞由红色菱形标记)。(d)(c)中构型的第一性原理模拟STM图像。

图4. 石墨烯/硅烯异质结构的电子局域函数(ELF)计算和输运特性。(a,b)硅烯纳米片和单层硅烯在硅原子平面的的电子局域函数(ELF)分布图。c)在105 K下测量的石墨烯/硅烯/钌垂直异质结构的电流-电压曲线,显示典型的肖特基型整流行为。插图是器件结构和测量的示意图。 d)伏安曲线的对数图。通过将其与Schockley模型拟合得到的理想因子为1.5。

相关文章

石墨烯钙钛矿新型X射线探测器问世

据物理学家组织网17日消息,瑞士洛桑联邦理工学院的研究人员通过使用3D气溶胶喷射打印,开发了一种生产高效X射线探测器的新方法。这种新型探测器可以很容易地集成到标准微电子设备中,从而大大提高了医疗成像设......

揭开了二维材料中自旋结构的秘密

二十年来,物理学家一直试图直接操纵石墨烯等二维材料中的电子自旋。这样做可以在蓬勃发展的二维电子学世界中带来关键性的进展,在这个领域中,超快、小型和灵活的电子设备会根据量子力学进行计算。研究人员发现了一......

20点直播|马普所教授讲述水石墨烯界面

直播时间:2023年5月12日(周五)20:00-21:30直播平台:科学网APP(科学网微博直播间链接)科学网微博科学网视频号北京时间2023年5月12日晚八点,iCANXTalks第143期,本期......

石墨烯制成迄今最薄心脏植入物

据发表在最新一期《先进材料》杂志上的论文,美国西北大学和得克萨斯大学奥斯汀分校领导的研究团队开发出由石墨烯制成的迄今最薄的心脏植入物。这种新的石墨烯植入物在外观上类似于一次性文身贴,厚度不及一根发丝,......

石墨烯制成迄今最薄心脏植入物

据发表在最新一期《先进材料》杂志上的论文,美国西北大学和得克萨斯大学奥斯汀分校领导的研究团队开发出由石墨烯制成的迄今最薄的心脏植入物。这种新的石墨烯植入物在外观上类似于一次性文身贴,厚度不及一根发丝,......

石墨烯传感器助力“意念控制”机器人

戴上专门的电子头带,用人的意念控制机器人,这听起来似乎只是科幻小说中存在的情节。但现在,发表在美国化学会《ACS应用纳米材料》上的研究向实现这一目标迈出了一步。通过设计一种不依赖于黏性导电凝胶的特殊3......

从掺鸟屎研究谈起:论文标题抖机灵引用率更高?

3年前,一篇横空出世的研究论文,狠狠地搅动了石墨烯电催化性能研究的一池春水。那篇论文的题目是《将任何废物放入石墨烯都会增加它的电催化性能吗?》。这篇发表在ACSNano(妥妥的一区)的论文,认认真真地......

清华团队研制石墨烯智能“人工喉”,为失声者带来好消息

从清华大学获悉,清华大学集成电路学院教授任天令团队第一次将被称为“黑金”的石墨烯转换成具有“收发一体”的可穿戴智能人工喉设备,帮助语言障碍者重获新“声”。该成果发表在最新一期的《自然·机器智能》上。在......

纳米波纹让石墨烯高效分解氢气

英国科学家的一项最新研究发现,石墨烯表面拥有奇特的纳米波纹,这使其能以比同等质量的现有最佳催化剂高100倍的效率分解氢气,有望实现更高性能的氢燃料电池,并提高很多工业过程的效率。相关研究刊发于最新一期......

“魔角”石墨烯超导性成因揭示

据最新发表在《自然》杂志上的一项研究,美国俄亥俄州立大学领衔团队发现的新证据显示,当石墨烯偏转到某个精确角度时,可成为超导体,传输电能而不损失能量。量子几何在这种偏转石墨烯成为超导体方面发挥了关键作用......