发布时间:2020-10-06 00:20 原文链接: 光电化学蚀刻可用于制造氮化镓中高纵横比深沟槽

日本SCIOCS有限公司和法政大学曾报导了在氮化镓(GaN)中利用光电化学(PEC)蚀刻深层高纵横比沟槽的进展[Fumimasa Horikiri et  al, Appl. Phys. Express, vol11, p091001, 2018]。 该团队希望该技术能够在高场中能够利用GaN的高击穿场和高电子迁移速度为电力电子技术开辟新的器件结构。

具有p型和n型材料列的“超结”结构是需要通过深度蚀刻技术来实现的。当这种结构结合到横向场效应晶体管中时,击穿电压能够达到10kV以上。这种超结漂移区和其他深蚀刻结构也会对垂直器件有益。对于激光二极管,晶片切割应用和微机电系统(MEMS)的脊形制造,同样需要高质量的快速蚀刻速率工艺。目前, PEC已经应用于台面,栅极凹陷和垂直腔面发射激光器(VCSEL)制造工艺上。

一般情况下,我们通过干等离子体蚀刻(如电感耦合等离子体反应离子蚀刻(ICP-RIE))来实现材料表面的深度蚀刻。 但这将进一步引起在GaN和掩模材料之间低干蚀刻选择性的问题。 高质量的蚀刻技术往往很慢,从而缩小了深层结构的范围。

研究人员通过空隙辅助分离蓝宝石中的n型氢化物气相外延(HVPE)材料制备了2英寸自支撑GaN衬底(Mike Cooke, Semiconductor Today, p80, June/July  2018] - a technique developed by SCIOCS)。此时晶片的位错密度在2×10 6cm-2至5×10 6cm-2的范围内。

通过金属 - 有机气相外延法使二极管层生长 ,形成5.8μmn-GaN肖特基势垒二极管、2μmn+型GaN、10μmn-型GaN,500nm p-型GaN和20nm p + 型GaN p-n二极管。 将p-n二极管材料在850℃,氮气氛围中退火30分钟以活化p型层中的镁受体。 退火的效果是驱除钝化受体的氢原子。

光电化学蚀刻可用于制造氮化镓中高纵横比深沟槽

图1:PEC蚀刻流程

用于PEC蚀刻的掩模材料(图1)是钛。 PEC蚀刻通过“光辅助阳极氧化”实现蚀刻GaN。 该工艺过程中,GaN释放Ga3 +,其正电荷来自GaN /电解质阳极界面处的紫外(UV)光产生的空穴。 通过在GaN晶片的背面上的欧姆接触和作为阴极的铂反电极之间建立的PEC的电路去除电子。 蚀刻电位为1V; 紫外线辐射由汞 - 氙灯提供,垂直入射9.0mW / cm2。 辐射和蚀刻电位以脉冲模式操作,电位为0.6占空比。

电解质中的氢氧根离子,其与Ga3 +反应,形成Ga2O3。其中电解质溶液中的0.01M氢氧化钠和1%Triton X-100作为润湿剂,以降低表面张力并有助于除泡。

这种PEC刻蚀工艺实现了24.9nm /分钟的平滑表面速率,与无损伤干法蚀刻技术效果基本相同。如果将PEC速率提高到175.5nm /分钟,则会导致表面粗糙,这类高速PEC可用于晶圆切割。

如果我们选择用由90μm直径圆点组成的50nm厚的钛掩模,通过PEC蚀刻至20μm的深度,那么选择性将大于400(20μm/ 50nm), 侧蚀小于1μm。

在沟槽蚀刻的实验中,达到的深度是由电流密度控制的,而不是沿GaN晶格的m轴或a轴的掩模取向。 短宽度孔径掩模的沟槽蚀刻速率在约30μm深度处减慢。 研究人员认为,这是由于紫外线辐射难以到达沟槽底部的蚀刻前沿。 他们补充说,相干的紫外光源可能有助于深沟槽蚀刻。

光电化学蚀刻可用于制造氮化镓中高纵横比深沟槽

图2:PEC刻蚀深度与沟槽纵横比之间的关系。

实线,虚线和虚线对应于基于PEC与沟槽宽度的纵横比的估计,其包括在两个壁中的0.7μm量级的侧蚀。 填充符号显示实验结果。

由图2可以看出实现的最大沟槽纵横比为7.3(3.3μm宽度和24.3μm深度)。 该团队说:“这种纵横比和蚀刻深度与ICP-RIE制造的SiC沟槽的最佳结果相当,表明PEC刻蚀的优势不仅在于光学和电子器件的制造,而且在于制造GaN-MEMS,如晶圆,隔膜,微流体通道和光栅的通孔。”


相关文章

第三代半导体龙头共话“换道超车”

以碳化硅、氮化镓为代表的宽禁带半导体材料,被称为“未来电子产业基石”。近日,上交所科创板新质生产力行业沙龙第二期聚焦第三代半导体产业领域,汇聚华润微、芯联集成、天岳先进等3家半导体头部企业,及多家证券......

苏州纳米所在新型氮化镓基光电器件领域取得进展

近年来,大数据、互联网和人工智能的快速发展,对数据处理的速度和效率提出了更高的要求。人类大脑是最复杂的计算系统之一,可以通过密集协调的突触和神经元网络同时存储、整合和处理大量的数据信息,兼具高速和低功......

一款光电化学电池将太阳能转化为氢气效率创新纪录

美国莱斯大学工程师将下一代卤化物钙钛矿半导体与电催化剂相结合,研制出了一款耐用、成本效益高且可扩展的光电化学电池,其能以20.8%破纪录的效率将太阳能转化为氢气。最新设备可作为一个化学反应平台,利用太......

科学家发明有效地将废热转化为电能的新方法

来自NIST和科罗拉多大学博尔德分校的团队开发了一种利用硅上氮化镓纳米柱的新型设备,可显着提高热能转化为电能的效率。这可能会回收大量浪费的热能,从而使工业和电网受益。美国国家标准与技术研究院(NIST......

化学刻蚀结合激光熔融抛光法加工熔石英元件

近期,中国科学院上海光学精密机械研究所精密光学制造与检测中心研究团队结合化学深刻蚀和激光抛光,对精磨后的熔石英玻璃进行加工,获得具有超光滑表面和高激光损伤阈值的熔石英元件。熔石英元件的紫外激光损伤是制......

研究团队在功率半导体器件和集成电路研究中取得进展

氮化镓(GaN)是一种宽禁带半导体,第三代半导体的典型代表。与第一代半导体硅基的器件相比,GaN器件具有更高耐压、更快开关频率、更小导通电阻等特性,在功率电子器件领域得到广泛应用。相关研究显示,GaN......

基于CuSQDs/Co3O4多面体信号放大hBN光电化学生物传感平台

本文基于CuS量子点(QDs)/Co3O4多面体驱动的多信号放大技术,研制了一种低背景信号、高灵敏度的六角氮化硼(h-BN)光电化学(PEC)生物传感平台。制备的具有大比表面积的多孔h-BN纳米片作为......

美科学家研制氮化镓制氢,让光电催化水解制氢更快捷

2011年,美国科学家研制出了一种新的氮化镓—锑合金,其能更方便地利用太阳光将水分解为氢气和氧气,这种新的水解制氢方法不仅成本低廉且不会排放出二氧化碳。科学家们在美国能源部的资助下,借用最先进的理论计......

牛津仪器等离子体技术—为刻蚀、沉积提供领先设备和工艺

分析测试百科网讯2018年11月7日,牛津仪器在西安天骊君廷酒店召开等离子体技术在刻蚀与沉积工艺中的应用研讨会,来自牛津仪器等离子技术部亚洲区销售和服务副总裁IanWright先生为大家详细介绍了牛津......

电子器件的光伏逆变器研制及示范应用项目通过验收

  近日,科技部高新司在厦门组织召开了“十二五”国家863计划“基于国产宽禁带电力电子器件的光伏逆变器研制及示范应用”项目验收会。  项目以实现碳化硅和氮化镓光......