发布时间:2013-12-24 14:22 原文链接: 卵子发生和受精机制研究方面研究取得系列进展

  在雌性哺乳动物和人类中,雌性生殖细胞在胎儿期就进入减数分裂,并阻滞在第一次减数分裂前期,外包一层起源于卵巢体细胞的颗粒细胞,共同形成原始卵泡。在雌性动物繁殖过程中,一部分原始卵泡逐渐激活、长大和成熟,最终排卵和受精。在人类,卵母细胞停滞在第一次减数分裂前期可长达十几年到几十年,一个月经周期一般有一个卵母细胞恢复减数分裂,同源染色体分离,产生成熟卵子,然后完成受精,并启动一个新生命。以前受研究手段的限制,这方面研究相对困难。转基因小鼠技术和条件基因敲出技术的应用,为研究卵子发生和受精机制提供了可靠的手段。

  浙江大学教授范衡宇实验室与中国科学院动物研究所研究员孙青原实验室合作发现,CRL4蛋白泛素化连接酶复合体在维持哺乳动物卵母细胞存活和受精后重编程过程中发挥重要作用。他们用条件基因敲除方法在小鼠原始卵泡的卵母细胞中特异地敲除了这个连接酶复合体的两个关键成分DDB1和VPRBP,发现雌性小鼠完全不育,出现卵巢早衰。VPRBP与DNA去甲基化酶TET家族成员直接结合,并激活其去甲基化酶活性。在已经激活的卵母细胞中敲除DDB1和VPRBP,虽然不造成卵巢早衰,但是雌性小鼠仍然不育,因为敲除了DDB1和VPRBP的卵母细胞由于缺乏TET酶活性,在受精之后不能使精子DNA发生去甲基化,导致胚胎基因组不能及时激活,早期胚胎死亡。该研究工作在12月20日在Science杂志发表。浙江大学为第一完成单位,范衡宇与孙青原为共同通讯作者 (Yu et al., Science, 2013)。

  最近,受精生物学研究组还通过转录组学的方法,发现了一系列与卵母细胞减数分裂恢复与发育能力相关的基因表达(Ma et al., Cell Cycle, 2013a)。除了细胞周期蛋白B以外,细胞周期蛋白O在控制减数分裂阻滞/恢复中也发挥关键作用(Ma et al., Biol Reprod, 2013)。利用Cre-loxP 条件敲除技术在卵母细胞中特异敲除Cdc42,引起雌性小鼠不育。进一步研究发现,尽管这些小鼠能够排卵,但卵子胞质分裂失败,极体不能排出(Wang et al., Mol Biol Cell)。在染色体分离调节方面,发现MBTD1与Pr-Set7 结合,能够稳定染色体上的H4K20me1,在调节染色体构型及排列中发挥重要作用(Luo et al., Cell Cycle, 2013)。一种新发现的PP2A抑制蛋白SET控制卵母细胞减数分裂染色体分离。SET定位在着丝粒内侧,它向动粒的迁移伴随着染色单体分离;过量表达SETβ能够导致姐妹染色单体发生提前分离(Qi et al., J Cell Sci, 2013)。由于在本领域的系列工作,受邀为重要国际期刊撰写综述论文(Qiao et al., Mol Aspects Med, 2013)。

  研究组还通过两种转基因小鼠,一种为携带有红色荧光蛋白标记线粒体的雄鼠,一种为携带有绿色荧光蛋白标记自噬体的雌鼠,揭示了线粒体母系遗传的新机制。研究发现,自噬并没有参与受精后精子线粒体的降解清除,维系线粒体母系遗传的机制主要是受精前精子线粒体DNA被清除,以及受精后精子线粒体在早期胚胎发育中不均匀分布所致(Luo et al., PNAS, 2013)。论文发表后,受邀撰写了短篇综述(Luo et al., Autophagy, 2013)。

  在环境对卵子和胚胎发育影响研究方面,揭示了DNA损伤对卵子成熟能力和早期胚胎卵裂球发育能力的影响,发现DNA损伤的卵裂球最终被排除,而不参与胚胎发育(Ma et al., Cell Cycle, 2013b; Wang et al., Cell Cycle, 2013)。研究组利用STZ诱导的糖尿病小鼠模型和非肥胖糖尿病小鼠模型(NOD),研究了母源糖尿病对卵子中印迹基因DNA甲基化模式的影响。发现母源印迹基因Peg3 DMR区甲基化模式以时间依赖的方式发生了改变。虽然胚胎发育也受到了母源糖尿病的不利影响,但是在糖尿病小鼠所生后代卵子中并没有观察到明显的印迹异常(Ge et al., Biol Reprod, 2013)。此外,利用高脂饲料饲喂的肥胖小鼠中,卵母细胞中印迹基因甲基化没有受到影响,但代谢相关基因的甲基化在卵子及后代卵子及肝脏中都出现了异常(Ge et al.,Environ Health Perspect, 2013)。Science Daily和Medical News Today等对相关工作进行了报道。

相关文章

Brain:科学家识别出参与阿尔兹海默病中神经元易感性发生的关键基因

神经变性疾病早期阶段的特征是离散脑细胞群中蛋白质的积累以及这些脑细胞的退化,对于大多数疾病而言,这种选择性的易感性模式是无法解释的,但其对于病理性机制或许能提供重要的见解。阿尔兹海默病是世界上主要的痴......

2024年中国基因编辑技术发展现状及趋势分析CRISPR/Cas优势明显

行业主要上市公司:金斯瑞(HK.1548)、凯赛生物(688065.SH)、华熙生物(688363.SH)、华恒生物(688639.SH)、川宁生物(301301.SZ)等本文核心数据:ZFNs技术;......

厚积薄发我国科学家揭开表观遗传“神秘面纱”

长期以来,人们普遍认为,脱氧核糖核酸(DNA)决定了生物体的全部表型。但问题来了,在相同环境中成长的同卵双胞胎,身高、肤色、性格、健康状况等并非完全相同,这是为什么?为了揭开表观遗传的“神秘面纱”,科......

基因解码揭示人类无尾之谜

纽约大学格罗斯曼医学院(NYUGrossmanSchoolofMedicine)的研究人员进行的一项新研究表明,我们远古祖先的基因变化可以部分解释为什么人类不像猴子那样有尾巴。这项研究成果最近发表在《......

人与猿类如何在进化中“甩掉”尾巴

猴子有尾巴,而人类和猿类的尾巴却在进化中消失了,是什么在其中起了关键作用?《自然》28日发表的一篇论文,报道了人类和猿类演化掉尾巴的遗传学基础。灵长类动物尾部表型的系统发育树(Ma表示百万年前)。图片......

一步到位沉默一个小鼠胆固醇基因

意大利科学家在一项小鼠研究中展示了无需永久性基因组编辑,也可对一个控制胆固醇水平的基因做到长效抑制。这一靶向表观遗传沉默(不用直接改变DNA序列就可改变基因功能)的效果在小鼠中持续近1年,令循环胆固醇......

安捷伦一季度营收缩水5.6%,仍稳坐16.6亿美元大关

2月27日,安捷伦科技公司(纽约证券交易所代码:A)公布截至2024年1月31日的2024财年第一季度财报。第一季度营收为16.6亿美元,与2023年第一季度相比下降5.6%,核心营收(1)下降6.4......

多样化菌群共存现象有了新解释

近日,中国科学院深圳先进技术研究院合成生物学研究所副研究员王腾团队在《自然—通讯》发表研究成果。该研究从理论上揭示了微生物群落中广泛存在的水平基因流动可以帮助竞争性微生物群体突破物种多样性“极限”,促......

与DNA损伤相关的145个基因“现形”

研究示意图。图片来源:《自然》杂志据最新一期《自然》杂志报道,通过对近1000只转基因小鼠开展研究,英国科学家发现了100多个与DNA损伤有关的关键基因。这项研究为开发癌症和神经退行性疾病个性化疗法提......

关节炎滑膜组织基因表达调控图谱,揭示关节炎风险位点的功能特征

关节炎是一种常见的关节病变,主要表现为滑膜增生、软骨变性及软骨下骨增生,造成关节功能丧失和生活质量下降,在60岁以上人群发病率超过50%,全球范围内有数亿人受到影响。全基因组关联研究(Genome-w......