发布时间:2023-10-11 16:10 原文链接: 声学超表面乒乓球竟能吸收低频噪音

长期接触低频噪音会导致许多健康问题,但解决方案可能出现在一个意想不到的地方——乒乓球表面。在最新一期《应用物理学杂志》中,法国里尔大学和希腊雅典国立技术大学研究人员描述了一种声学超表面,其使用乒乓球作为亥姆霍兹谐振器,创造出廉价但有效的低频隔音效果。

基于穿孔乒乓球的声学超表面声音传输的实验装置和数值模型。

图片来源:萨巴特等人/优睿科网站

低频噪音在城市、道路附近和机场很普遍,是城市中常有的声音背景,可能引发耳痛、呼吸障碍、烦躁和其他长期不良影响。低频噪声由多种来源产生,与高频声音相比更加难以避免。

声学超表面是专门设计用于操纵声波的材料。该超表面使用空心乒乓球,每个球上都有小孔,模拟亥姆霍兹谐振器。亥姆霍兹谐振器具有独特的能力,能够以其自然频率精确捕获环境声波。新研究的独创性是考虑两个谐振器之间的耦合效应,其导致两个谐振频率的出现。

这也意味着该设备能够吸收更多的声音。在两个耦合谐振器取得成功后,研究人员添加了更多谐振器,从而增加了可吸收的谐振频率的数量。

通过调整球的数量、孔的数量和孔的大小,研究人员还可改变超表面的声学特性,证明无需昂贵的材料即可设计出吸声板。

研究人员表示,这种超表面的潜力超出了隔音效果。它可被扩展以实现于其他功能,如声音聚焦、非常规声音反射、声音传输操纵等。

相关文章

我国在高频声表面波器件领域取得重要突破

记者2月26日从中国科学技术大学获悉,该校微电子学院左成杰教授研究团队在世界上首次提出并实现了一种新型的耦合剪切模态声表面波谐振器,利用两个不同方向的剪切压电系数相互耦合,在5GHz高频实现了高达34......

声学超表面乒乓球竟能吸收低频噪音

长期接触低频噪音会导致许多健康问题,但解决方案可能出现在一个意想不到的地方——乒乓球表面。在最新一期《应用物理学杂志》中,法国里尔大学和希腊雅典国立技术大学研究人员描述了一种声学超表面,其使用乒乓球作......

声学超表面乒乓球竟能吸收低频噪音

长期接触低频噪音会导致许多健康问题,但解决方案可能出现在一个意想不到的地方——乒乓球表面。在最新一期《应用物理学杂志》中,法国里尔大学和希腊雅典国立技术大学研究人员描述了一种声学超表面,其使用乒乓球作......

声学超表面乒乓球竟能吸收低频噪音

长期接触低频噪音会导致许多健康问题,但解决方案可能出现在一个意想不到的地方——乒乓球表面。在最新一期《应用物理学杂志》中,法国里尔大学和希腊雅典国立技术大学研究人员描述了一种声学超表面,其使用乒乓球作......

声学超表面乒乓球竟能吸收低频噪音

长期接触低频噪音会导致许多健康问题,但解决方案可能出现在一个意想不到的地方——乒乓球表面。在最新一期《应用物理学杂志》中,法国里尔大学和希腊雅典国立技术大学研究人员描述了一种声学超表面,其使用乒乓球作......

研发芯片级微梳环形谐振器可实现每秒千兆位数据传输

随着光纤通信重要核心技术在规模、速度和能效方面接近极限,需要进一步扩展数据传输能力的新技术。瑞典查尔姆斯理工大学联合研究开发了使用芯片级微梳环形谐振器源进行每秒千兆位的数据传输。成果发表于《自然》杂志......

观测到太阳大气中开尔文一亥姆霍兹不稳定性现象

国际杂志《天体物理学快报》近日发表了中国科学院云南天文台一米新真空太阳望远镜的最新观测成果。该研究由云南天文台副研究员申远灯(共同第一作者)和哈尔滨工业大学副教授袁丁共同主导完成,他们研究发现,冷热等......

德最大研究机构评审结果:缺少大数据和多元化

位于南极的诺伊迈尔三号站是由亥姆霍兹管理的阿尔弗雷德魏格纳极地与海洋研究所的一部分。图片来源:StefanChristmann/AWI/CC-BY4.0虽然德国最大研究机构正在资助一流科学,但它需要雇......

奥地利科学家成功在两个单光子间建立强大的相互作用

在自由空间中的两个光子之间不相互作用,光波彼此擦身而过不会相互影响。然而,对于量子技术的许多应用,光子之间的相互作用却至关重要。奥地利维也纳理工大学的一个科学家团队现成功在两个单光子之间建立起强大的相......

美公司打造乒乓球卫星可将个人物品送至太空

飞行在太空边缘的乒乓球卫星紧凑的微型实验室,准备升空!北京时间8月8日消息,据国外媒体报道,花不起20万美元体验一把太空之旅?那么就去看看约翰·鲍威尔(JohnPowell)创立的“乒乓球卫星”项目(......