近日,我所燃料电池研究部醇类燃料电池及复合电能源研究中心金属燃料电池系统研究组(DNL0313组)王二东研究员团队在水系锌金属电池电解液研究方面取得新进展。该团队提出双相电解液策略,有效抑制了锌金属负极的枝晶生长和析氢反应,实现锌金属电池的长寿命运行。

  水系锌金属电池具有高安全性、低成本、环境友好以及较高的能量密度和功率密度等优势,被认为是一种具有应用前景的大规模储能技术。然而,锌负极的不均匀沉积和在水系电解液中的热力学不稳定性,导致枝晶和析氢问题,因而限制了水系锌金属电池的循环寿命。

  

  针对上述问题,该团队在前期工作中构建了人工固态电解质界面间相(SEI膜),调控锌负极表面均匀的Zn2+通量,并促进Zn脱溶剂化,实现了高稳定性(5mA/cm2条件下循环700h)的锌负极(Energy Storage Materials,2022;Nano Energy,2022)。在上述工作基础上,团队通过盐析效应设计了一种双相电解液体系。该体系的负极侧电解液富含有机溶剂,而正极侧电解液以水溶液为主。此外,团队探究了双相电解液的制备过程和规律,提出电解液各组分的选择标准。

  研究发现,富有机相电解液不仅降低水含量28vt.%,还改变了Zn2+的溶剂化结构,此外,原位形成了均匀的ZnOHF固态电解质界面间相(SEI)。这种协同作用有助于抑制水引发的腐蚀反应和枝晶生长,从而实现较高的平均库仑效率(400次循环以上为99.68%)和较长的循环寿命(5mA/cm2条件下循环700h)。在正极侧,水相电解质保持了32mS/cm的离子传导率,并且残留的NMP分子改变了电极/电解质的界面特性,从而加速了氧化还原动力学。采用双相电解质组装的Zn//PANI(聚苯胺)全电池在倍率、循环和贮存性能方面均优于传统ZnSO4电解液基电池。该双相电解质工程策略为设计实用化锌金属电池的电解液提供了新思路。

  上述工作以“Biphasic Electrolyte Engineering Enabling Reversible Zn Metal Batteries”为题,于近日发表在《美国化学会能源快报》(ACS Energy Letters)上。该工作的第一作者是我所DNL0313组已毕业博士生樊贺飞。上述工作得到了国家自然科学基金等项目的资助。(文/图 樊贺飞)

  文章链接:https://doi.org/10.1021/acsenergylett.3c01423

  DICP科普一下∣电池电解液


相关文章

XRF用于氢燃料电池的质量控制

XRF用于氢燃料电池的质量控制在减少碳排放的竞赛中,燃料电池技术发展迅速。锂离子电池技术和氢燃料电池系统都能助力有关减少世界二氧化碳排放的解决方案。所有类型的燃料电池均包括三个基本组成部分:两个电极(......

废鸡毛有什么用?竟能用于燃料电池制造!

家禽产业每年约有4000万吨废弃鸡毛被焚烧,这不仅会释放大量二氧化碳,还会产生二氧化硫等有毒气体。日前,瑞士苏黎世联邦理工学院和新加坡南洋理工大学的研究人员表示,他们正在利用鸡毛使燃料电池更具成本效益......

大连化物所发《能源快报》:提出锌金属电池双相电解液策略

近日,我所燃料电池研究部醇类燃料电池及复合电能源研究中心金属燃料电池系统研究组(DNL0313组)王二东研究员团队在水系锌金属电池电解液研究方面取得新进展。该团队提出双相电解液策略,有效抑制了锌金属负......

大连化物所发《能源快报》:提出锌金属电池双相电解液策略

近日,我所燃料电池研究部醇类燃料电池及复合电能源研究中心金属燃料电池系统研究组(DNL0313组)王二东研究员团队在水系锌金属电池电解液研究方面取得新进展。该团队提出双相电解液策略,有效抑制了锌金属负......

高抗氨毒化燃料电池阳极催化剂研制成功

8月27日,记者从中国科学技术大学获悉,该校高敏锐教授课题组研制出一种高抗氨毒化的镍基碱性膜燃料电池阳极催化剂,其在阳极含10ppm氨的膜电极组装中,能保持95%的初始峰值功率密度和88%的初始电流密......

中科大研制出新型燃料电池阳极催化剂或将解决碱性膜燃料电池实用化难题

燃料电池,又称电化学发生器,是一种把燃料所具有的化学能直接转换成电能的化学装置。在理想情况下,燃料电池不受卡诺循环效应的限制,原材料是内部燃料与氧气,因此排出的有害气体极少且能聊效率很高。尤其是在强调......

宁波材料所海水电解阳极腐蚀机理研究获进展

利用海水替代淡水进行电解制氢被认为是一种经济、可持续的技术。目前,海水电解存在着阳极稳定性差的问题,制约了其进一步的发展。研究发现海水中高浓度的Cl-会造成阳极的严重腐蚀,导致电极快速失效。因此,科学......

海水电解制氢大尺寸、高稳定阴极技术研究获进展

通过海上可再生能源进行电解海水制氢被科学家认定为未来获取“绿氢”能源的重要途径之一。然而,海上可再生能源(如风能、光伏、潮汐能等)具有波动性强、环境苛刻等特点,加之海水体系含有大量的Cl-以及其他细菌......

微型3D材料可提高燃料电池效率

澳大利亚悉尼新南威尔士大学研究人员展示了一种创造微型3D材料的新技术,最终可使氢电池等燃料电池更便宜、更可持续。近日发表在《科学进展》杂志上的该研究,有可能在纳米尺度上按顺序“生长”互连的3D层次结构......

FIE|前沿专题:精选燃料电池系列文章

#1Effectofcatalystlayermesoscopicpore-morphologyoncoldstartprocessofPEMfuelcellsAhmedMohmedDAFALLA,F......