发布时间:2020-09-15 09:52 原文链接: 细胞周期1

以有丝分裂方式增殖的细胞从一次分裂结束到下一次分裂结束所经历的过程。这一过程周而复始。
细胞周期是50年代细胞学上重大发现之一。在这之前认为有丝分裂期是细胞增殖周期中的主要阶段,而把处于分裂间期的细胞视为细胞的静止阶段。
1951 年霍华德等用32P-磷酸盐标记了蚕豆根尖细胞,通过放射自显影研究根尖细胞DNA合成的时间间隔,观察到32P之掺入不是在有丝分裂期,而是在有丝分裂前的间期中的一段时间内。发现间期内有一个DNA合成期(S期),32P只在这时才掺入到DNA;S期和分裂期(M期)之间有一个间隙无32P掺入,称为 G2 期,在M期和S期之间有另一个间隙称为G1 期,G1 期也不能合成DNA。
于是他们提出了细胞周期的概念,并首先证明间期是细胞周期中极为重要的一个阶段,发生着许多与细胞分裂有关的特殊生化事件。这一发现被以后学者们用 3H-胸腺嘧啶核苷进行的类似研究所证实。


细胞生命活动大部分时间是在间期度过的,如大鼠角膜上皮细胞的细胞周期内,间期占14000分钟。分裂期仅占70分钟。细胞周期各阶段都有复杂的生化变化。间期是细胞合成DNA、RNA、蛋白质和各种酶的时期,是为细胞分裂准备物质基础的主要阶段。
在一个增殖的细胞群中,所有细胞并非是同步增殖的,它们在细胞周期运行中,可能有四种命运(图1):①细胞经M期又开始第二次周期;②停止于G2 期,称为G2 期细胞(R2),它受某种刺激后可进入周期;③停止在G1 期,称为休止细胞或名G0期细胞,这类细胞受某种刺激仍能进入周期,并开始DNA合成和有丝分裂;④丧失生命力近于死亡的细胞,称为丢失细胞,或称不再分裂的细胞。继续分裂的细胞沿着细胞周期从一个有丝分裂期到下一个分裂期。不再分裂的细胞离开了细胞周期不再分裂,最终死亡。


G1 期  进行大量物质合成时期。细胞体积逐渐增大,制造RNA(包括tRNA,mRNA,rRNA以及核糖体等)。RNA的合成又导致结构蛋白和酶蛋白的形成,这些酶又控制着形成新细胞成分的代谢活动。G1 又分为G1 早期和G1 晚期两个阶段;细胞在G1 早期中合成各种在G1 期内所特有的RNA和蛋白质,而在G1 晚期至S期则转为合成DNA复制所需要的若干前体物和酶分子,包括胸腺嘧啶激酶、胸腺嘧啶核苷酸激酶、脱氧胸腺嘧啶核苷酸合成酶等,特别是DNA聚合酶急剧增高。这些酶活性的增高对于充分利用核酸底物在S期合成DNA是不可少的条件。
G1 期持续时间变异很大,多数细胞的G1 期较长,是与细胞需要增加质量有关。但在某些单细胞生物如大变形虫、四膜虫和多细胞生物的某些细胞(如海胆胚胎,小鼠胚胎细胞)则无G1 期,中国仓鼠卵巢细胞的变异株无G1 和G2 期,以致M期和S期连接在一起。G1 期的长短之所以变化很大,与G1 期内存在一个校正点或阻止点(简称R点)有关。R点主要控制 G1 期时间的长短。通过了此点,细胞就能以正常速度不受外界条件的影响而完成细胞周期的其他时期。因此,有人认为细胞的生长是在G1 期R点上停止的,例如当细胞内环腺苷酸(cAMP)水平增高,细胞密度增加时,可阻止细胞从G1 期向S期过渡,用嘌呤霉素抑制蛋白质合成或用放射线菌素D抑制RNA合成,也能延缓细胞从G1 期进入S期(图2)。
有人发现 G1 期内能合成一种有触发作用的蛋白质;它是不稳定的,极易被分解,故称为v蛋白。v蛋白在G1 细胞中达到一定水平时,细胞便可通过R点进入S期。
G0期  细胞周期的调节主要是通过G1 期的阻留而实现的,G0期即指细胞处于阻留的状态。细胞通过M期一分为二,有的可继续分裂进行周期循环,有的转入G0期。G0期是脱离细胞周期暂时停止分裂的一个阶段。但在一定适宜刺激下,又可进入周期(图1),合成DNA与分裂。G0期的特点为:①在未受刺激的G0细胞,DNA合成与细胞分裂的潜力仍然存在;②当G0细胞受到刺激而增殖时,又能合成DNA和进行细胞分裂。
S期  在这一阶段完成DNA的合成以及合成与DNA组装构成染色质等有关的组蛋白。 DNA含量在此时期增加一倍。S期终结时,每一染色体复制成两个染色单体(Hole,1979)。 生成的两个子代DNA分子与原来DNA分子的结构完全相同。一个人体细胞核直径10~20微米,其中DNA含量为10-11克,如拉成一根DNA链,长度可达3米。哺乳类动物细胞S期一般为6~8小时。DNA的复制能在几小时内完成,主要是由于DNA链分成许多的复制单位(复制子)(可多达10000个左右),它们可在S期的不同时间分别复制。另外,在S期内还有组蛋白的合成──组蛋白基因在G1 -S期之间活化,组蛋白mRNA的转录增大,并在整个S期内连续进行。 已合成的组蛋白使新合成的DNA很快转为核组蛋白复合体。
S期细胞含有一种因素能诱导DNA合成,用细胞融合实验证明,G1 细胞在与S期细胞融合后能加速其核内DNA复制的起点启动。S期不同阶段复制的DNA碱基组成是不同的,早期复制的DNA富有G-C碱基,晚期复制的 DNA富有A-T碱基,即常染色质比异染色质复制较早(图2)。


相关文章

上海科大:细胞周期蛋白在多细胞生物中的更多潜在功能

上海科技大学生命科学与技术学院助理教授YuuKimata发表题为“APC/CUbiquitinLigase:CouplingCellularDifferentiationtoG1/G0PhaseinM......

致命脑瘤为何“男女有别”?科学家发现背后遗传机制

胶质母细胞瘤是最常见的恶性脑瘤,约一半患者在诊断后生存期不超过14个月。而与女性相比,更多的男性患有并死于这种癌症。尽管几十年来,科学家们已经认识到这种男女差异,但这其中的原因他们一直不清楚。近日,圣......

Cell:挑战常规!细胞周期的G1期和G2期是非常类似的

我们体内的细胞通过一个四阶段过程进行增殖:在G1期间,细胞首先增加它们的质量并为DNA复制作好准备;在S期间,它们复制DNA;接下来,在G2期间,它们检查重复DNA的保真度并组装细胞分裂所需的材料;最......

中国科研团队找到细胞增殖“刹车司机”

USP11通过p21调控细胞周期模式图。湖南大学生物学院供图湖南大学17日对外透露,该校分子科学与生物医学实验室(MBL)叶茂教授研究团队在国际上首次发现了细胞周期蛋白激酶抑制子p21的去泛素化酶US......

Science重磅!癌细胞生长“可控”了!

癌症是一种非常复杂的疾病,但大多数情况下人们却仅以细胞的异常和不可控生长来对其进行定义。近日,美国罗切斯特大学RNA生物学中心的研究人员确定了一种新方法,可以减慢癌细胞的增殖速度并适用于所有类型癌症。......

靶向细胞周期的miRNA抑制癌症新发现

哈佛大学医学院、Dana-Farber癌症研究所PiotrSicinski教授研究组与北京大学生命科学学院、北大-清华生命科学联合中心、统计科学中心李程研究组合作,在《CancerCell》期刊发表了......

美科院院士解析DNA复制过程调控机制

这是一个自然奇观:增殖细胞能够精确地复制自己的遗传物质,一次且只有一次,当分裂成两个子细胞时,从空间上分离所得的两套染色体。在我们的一生当中,仅有在我们的血液系统中,每分钟就有约5亿个细胞在骨髓中出生......

苏州大学王志伟教授Nature子刊发表癌症研究新成果

来自苏州大学、哈佛医学院和吉林大学等处的研究人员证实,SCFβ-TRCP通过介导PR-Set7/Set8降解促进了细胞生长。这一研究发现发布在12月15日的《自然通讯》(NatureCommunica......

Nature:细胞周期进程的红绿灯

产生后代是所有生物的进化目标。单个细胞的增殖是通过细胞周期协调的。2001年,三位科学家因发现真核生物细胞周期是如何被调节的,获得了当年的诺贝尔生理学奖。最近,瑞士巴塞尔大学UrsJenal教授带领的......

Nature:细胞周期进程的红绿灯

产生后代是所有生物的进化目标。单个细胞的增殖是通过细胞周期协调的。2001年,三位科学家因发现真核生物细胞周期是如何被调节的,获得了当年的诺贝尔生理学奖。最近,瑞士巴塞尔大学UrsJenal教授带领的......