发布时间:2023-05-11 10:23 原文链接: 金黄色葡萄球菌一氧化氮合成酶NOS调控万古霉素耐药性

  金黄色葡萄球菌是人类重要机会性致病细菌,由甲氧西林耐药性金黄色葡萄球菌(MRSA)引发的感染正严重威胁公共健康安全。万古霉素被认为是临床上治疗严重MRSA感染的最后一道防线,其中度耐药性菌(VISA)的频繁出现,为MRSA的感染治疗带来了巨大挑战。

  一氧化氮(NO)可由一氧化氮合成酶(NOS)产生,参与调节各种生理功能。NO可通过对蛋白质半胱氨酸残基的巯基进行S-亚硝基化修饰影响蛋白质的活性和功能。金黄色葡萄球菌携带NOS,且被报道参与调控金黄色葡萄球菌的万古霉素耐药性,但相关分子机制尚不明确。

  近日,中国科学技术大学生医部孙宝林课题组与首都医科大学附属北京儿童医院于丹课题组合作(孙宝林课题组的舒雪琴博士为第一作者),在 Nature Communications 期刊发表了题为:Transcription tuned by S-nitrosylation underlies a mechanism for Staphylococcus aureusto circumvent vancomycin killing 的研究论文。

  该研究揭示了金黄色葡萄球菌一氧化氮合成酶(NOS)及其内源产生的一氧化氮(NO)在促进万古霉素抗性中的作用机制:细菌NOS来源的NO通过介导MgrA或WalR发生S-亚硝基化修饰,促进他们对自溶相关靶基因的负调控功能,导致细胞的自溶活性下降,介导细胞壁厚度增加,进而促进金黄色葡萄球菌的万古霉素耐药性。该研究有望为临床治疗VISA及其他细菌病原体的感染提供新的思路与策略。

  基于NO可对蛋白质半胱氨酸残基的巯基进行S-亚硝基化修饰,研究人员首先采用蛋白质修饰组学分析鉴定了金黄色葡萄球菌中可被内源NO亚硝基化修饰的蛋白靶点,并聚焦在与自溶活性、耐药性以及毒力具有重要调控功能的MgrA上,其上位于第12位的唯一半胱氨酸Cys12发生了S-亚硝基化修饰。为了验证蛋白组学的结果,研究人员通过western blot对MgrA由NO介导的S-亚硝基化修饰进行了验证。

  修饰组学揭示内源NO造成MgrA的S-亚硝基化修饰

  为了探究MgrA的S-亚硝基化修饰对VISA菌株万古霉素耐药性的影响,研究人员将半胱氨酸突变为不能发生修饰的丝氨酸或丙氨酸(C12S或C12A)。发现MgrA点突变菌株与NOS敲除株类似,均表现出对万古霉素的抗性显著下降。研究者发现外源添加NOS抑制剂亦会导致VISA菌株对万古霉素耐药性降低。此外,外源性添加NO供体SNP可以促进NOS敲除株对万古霉素的耐药性,而对MgrA点突变菌株与的耐药性没有促进作用,表明NOS产生的低浓度NO及其介导的MgrA S-亚硝基化修饰在促进金黄色葡萄球菌万古霉素耐药性过程中发挥了重要作用。

  VISA菌株常表现为细胞壁增厚以及细胞自溶活性下降。研究人员发现,MgrA点突变菌株和NOS敲除株的细胞壁厚度均发生下降,细胞自溶活性均显著增加。实时荧光定量PCR(RT-qPCR)结果显示部分自溶相关基因的转录水平发生明显上调,表明MgrA的S-亚硝基化修饰可能通过对自溶基因的调控进而调控细胞的自溶活性以及影响细胞壁厚度,进而增强金黄色葡萄球菌对万古霉素的抵抗能力。

  有研究发现,MgrA可通过与下游靶基因的启动子结合发挥直接的调控作用,因此研究人员猜测S-亚硝基化修饰可能会通过影响MgrA与其靶标基因的启动子结合进而发挥调控功能。通RT-qPCR、染色质免疫共沉淀-qPCR、凝胶阻滞迁移实验等方法表明NO介导的MgrA的S-亚硝基化修饰通过影响MgrA与下游靶基因启动子的结合能力,从而干扰自溶相关基因转录,降低细菌自溶活性。

  为了探究金黄色葡萄球菌中是否还存在其他转录因子利用类似的调控机制参与万古霉素耐药性的发生,研究人员对质谱鉴定到的另一个在第67位半胱氨酸发生修饰的转录调控因子WalR进行了研究,发现WalR的C67S点突变菌株表现出与NOS敲除株和MgrA点突变菌株类似的现象:对万古霉素的抗性显著下降、细胞壁变薄以及细胞自溶活性增加,并展现了与MgrA中类似调控机制。以上结果表明金黄色葡萄球菌NOS内源产生的NO通过S-亚硝基化修饰介导的转录调控机制在细菌中可能具有普遍性。

  总的来说,该研究利用修饰组学分析鉴定了金黄色葡萄球菌NOS内源NO的S-亚硝基化修饰靶点,揭示了细菌NOS及其内源产生的NO通过介导靶蛋白的S-亚硝基化修饰以促进万古霉素耐药性发生的具体分子机制,加深了我们对金黄色葡萄球菌万古霉素耐药性发生机制以及NO信号分子作用方式的认识。该研究提示细菌NOS特异性抑制剂、NO清除剂或S-亚硝基化修饰抑制剂等的开发,有望为临床治疗VISA及其他细菌病原体的感染提供新的思路与策略。

  中国科学技术大学生命科学与医学部孙宝林教授、国家儿童医学中心首都医科大学附属北京儿童医院于丹副教授为本论文的通讯作者;孙宝林教授课题组的舒雪琴博士为本论文的第一作者;研究生石莹滢、黄奕也为该工作做出了贡献。感谢第三军医大学的饶贤才教授对本研究提供的帮助与支持。

相关文章

金纳米颗粒有望抑制金黄色葡萄球菌感染

中国科学院昆明动物研究所研究员赖仞团队研究获得了直径约3纳米的多肽修饰的金纳米颗粒(Au_CR),对金黄色葡萄球菌表现出特异的抑菌作用,主要通过作用于细菌的细胞膜杀死细菌。相关研究成果日前发表于《纳米......

人鼻中发现新型抗生素物质,可对抗病原体

德国图宾根大学研究人员从人类鼻子中发现了一种新的抗生素物质,可用来对抗病原体。这种名为epifadin的分子是由表皮葡萄球菌的特定菌株产生的。他们将epifadin归为一类前所未知的新型抗菌化合物,它......

内溶酶细菌对抗生素耐药问题的解决方案?

如果您曾经有过伤口感染,金黄色葡萄球菌是一种在这过程中出现的常见细菌。在大多数情况下,感染会自行消失,无需任何治疗。但是,如果感染严重,则可能需要使用抗生素来根除细菌。事实上,我们中的许多人不知不觉地......

金黄色葡萄球菌一氧化氮合成酶NOS调控万古霉素耐药性

金黄色葡萄球菌是人类重要机会性致病细菌,由甲氧西林耐药性金黄色葡萄球菌(MRSA)引发的感染正严重威胁公共健康安全。万古霉素被认为是临床上治疗严重MRSA感染的最后一道防线,其中度耐药性菌(VISA)......

金黄色葡萄球菌一氧化氮合成酶NOS调控万古霉素耐药性

金黄色葡萄球菌是人类重要机会性致病细菌,由甲氧西林耐药性金黄色葡萄球菌(MRSA)引发的感染正严重威胁公共健康安全。万古霉素被认为是临床上治疗严重MRSA感染的最后一道防线,其中度耐药性菌(VISA)......

Nature:抗生素联合使用并不都有利于清除金黄色葡萄球菌

在一项新的研究中,来自以色列理工学院的研究人员开发出一种新的技术来测量抗生素组合使用的长期影响。这些抗生素组合引起了科学界和医学界的极大兴趣,因为使用单一的抗生素往往导致细菌对这类药物的抗药性迅速产生......

Nature:抗生素联合使用并不都有利于清除金黄色葡萄球菌

在一项新的研究中,来自以色列理工学院的研究人员开发出一种新的技术来测量抗生素组合使用的长期影响。这些抗生素组合引起了科学界和医学界的极大兴趣,因为使用单一的抗生素往往导致细菌对这类药物的抗药性迅速产生......

数据未获得授权,中山大学梁影剑等人的文章被撤回

2021年6月10日,中山大学梁影剑(音译,LiangYingjian)等人在InfectionandDrugResistance在线发表题为“TrendinAntimicrobialResistan......

数据未获得授权,中山大学梁影剑等人的文章被撤回

2021年6月10日,中山大学梁影剑(音译,LiangYingjian)等人在InfectionandDrugResistance在线发表题为“TrendinAntimicrobialResistan......

银基抗菌剂可以有效地对抗耐抗生素的金黄色葡萄球菌

一个研究小组发现,银基抗菌剂可以通过破坏关键蛋白质的功能来靶向多种生物途径,从而有效地对抗耐抗生素的金黄色葡萄球菌,并且可以进一步利用银基抗菌剂来提高传统抗生素的疗效,以及使耐甲氧西林的葡萄球菌重新敏......