发布时间:2023-08-30 15:06 原文链接: 高彩霞团队开发出不依赖CRISPR的全新碱基编辑工具

  基因组编辑可以对生物体遗传信息进行精准、高效的修饰,已成为生命科学领域的一项颠覆性技术。通过融合nCas9(切口酶形式的Cas9)与脱氨酶,美国哈佛大学David Liu团队先后开发出胞嘧啶碱基编辑系统(Cytosine base editor,CBE)和腺嘌呤碱基编辑系统(Adenine base editor,ABE),将以CRISPR为代表的基因组编辑技术引入了“精准编辑”的全新时代。

  近日,中国科学院遗传与发育生物学研究所高彩霞团队开发了突破CRISPR限制的模块化结构的碱基编辑新系统——CyDENT。与此前的碱基编辑工具不同,这一系统在细胞核、线粒体和叶绿体中均实现了高效胞嘧啶碱基编辑,尤其是在线粒体编辑中展现出优良的链特异性和低序列偏好性,提供了具有广泛基因组靶向能力且高精准的全新碱基编辑工具。

  CyDENT系统包含TALE蛋白、FokI切口酶、单链特异性胞嘧啶脱氨酶、DNA外切酶及UGI等组分,并基于一套全新的工作模型:首先由TALE蛋白引导FokI切口酶至细胞核或者细胞器的DNA靶点处产生单链切口,之后由DNA外切酶从切口处对包含切口的DNA链进行部分外切消化,此时互补链将以单链DNA的形式呈现,成为单链特异性胞嘧啶脱氨酶的作用底物,并在UGI的帮助下最终完成胞嘧啶碱基编辑。由于能够发生脱氨的DNA链取决于切口产生的位置,该工作模型能够实现具有单链偏好性的碱基编辑,提高了编辑精准度。

  研究分别选取水稻原生质体细胞核、叶绿体以及HEK293T细胞系线粒体中的靶点进行测试。结果显示:CyDENT均可实现高效的胞嘧啶碱基编辑,其中在动物细胞线粒体中的编辑效率接近40%;CyDENT系统可进行具有单链偏好性的线粒体碱基编辑,精准性相较于基于双链脱氨原理的线粒体碱基编辑器得到了提升。此外,得益于CyDENT系统的模块化特性,研究还将该团队近期利用AI辅助挖掘得到的全新脱氨酶(DOI: 10.1016/j.cell.2023.05.041)与其结合,对处于不同序列背景(TC或GC)下的胞嘧啶进行有效编辑,提升了碱基编辑的精准性和灵活性。通过将胞嘧啶脱氨酶更换为腺嘌呤脱氨酶,CyDENT还具有进行腺嘌呤碱基编辑的潜力。通过全核基因组和全线粒体基因组脱靶分析表明了CyDENT具有良好的编辑特异性。

  总的来说,具有完全自主知识产权的不依赖CRISPR的全新碱基编辑工具CyDENT,首次集成了对细胞核和细胞器进行精准碱基编辑的能力。结合该团队前期挖掘的全新脱氨酶,本研究进一步实现了CyDENT系统从核心组分到底层工作模型的全自主创新。CyDENT系统的开发,再次升级了细胞核及细胞器的精准编辑策略,对疾病治疗和农作物精准分子育种具有重要的潜在应用价值。

  8月28日,相关研究成果以Strand-preferred base editing of organellar and nuclear genomes using CyDENT为题,在线发表在《自然-生物技术》(Nature Biotechnology,DOI : 10.1038/s41587-023-01910-9)上。研究工作得到农业农村部、中国科学院战略性先导科技专项、国家重点研发计划和国家自然科学基金等的支持。

image.png

CyDENT碱基编辑系统及其应用。a、CyDENT碱基编辑工作模型及在细胞核和细胞器编辑中的应用;b、CyDENT在植物细胞核中的单链特异性碱基编辑;c、CyDENT在动物细胞线粒体中的单链特异性碱基编辑。

相关文章

张峰团队边裁员边融资碱基编辑行不通了?

近日,由明星科学家张峰、刘如谦联合创立的BeamTherapeutics宣布将裁掉100名也就是20%的员工,暂停部分研究,并在一些药物项目开发上寻找合作伙伴。作为CGT领域的明星公司、引人瞩目的平台......

高彩霞团队开发出不依赖CRISPR的全新碱基编辑工具

基因组编辑可以对生物体遗传信息进行精准、高效的修饰,已成为生命科学领域的一项颠覆性技术。通过融合nCas9(切口酶形式的Cas9)与脱氨酶,美国哈佛大学DavidLiu团队先后开发出胞嘧啶碱基编辑系统......

高彩霞团队开发出不依赖CRISPR的全新碱基编辑工具

基因组编辑可以对生物体遗传信息进行精准、高效的修饰,已成为生命科学领域的一项颠覆性技术。通过融合nCas9(切口酶形式的Cas9)与脱氨酶,美国哈佛大学DavidLiu团队先后开发出胞嘧啶碱基编辑系统......

高彩霞团队开发出不依赖CRISPR的全新碱基编辑工具

基因组编辑可以对生物体遗传信息进行精准、高效的修饰,已成为生命科学领域的一项颠覆性技术。通过融合nCas9(切口酶形式的Cas9)与脱氨酶,美国哈佛大学DavidLiu团队先后开发出胞嘧啶碱基编辑系统......

医学界的里程碑还是昙花一现?CRISPR疗法治病能走多远

维多利亚·格雷患有一种被称为镰状细胞病的遗传性疾病,这种疾病会导致红细胞形成异常的“镰刀”形状,阻塞毛细血管,患者不但疼痛异常,还可能造成器官损伤。自记事起,疼痛就一直伴随着格雷。随着年龄的增长,她的......

医学界的里程碑还是昙花一现?CRISPR疗法治病能走多远

维多利亚·格雷患有一种被称为镰状细胞病的遗传性疾病,这种疾病会导致红细胞形成异常的“镰刀”形状,阻塞毛细血管,患者不但疼痛异常,还可能造成器官损伤。自记事起,疼痛就一直伴随着格雷。随着年龄的增长,她的......

新研究:精准基因编辑技术

中国科学院遗传与发育生物学研究所高彩霞研究组开创性地运用AI辅助结构预测,建立起基于三级结构的蛋白聚类方法,并扩展为全新的脱氨酶挖掘体系,开发了一系列具有中国自主知识产权的新型碱基编辑工具。该工作为蛋......

真核生物中类“基因魔剪”机制首次揭示

美国麻省理工学院麦戈文脑研究所、麻省理工学院博德研究所和哈佛大学张锋团队在真核生物中发现了第一个可编程的RNA引导系统。29日发表于《自然》杂志上的论文称,这种基于Fanzor蛋白的系统能对人类基因组......

真核生物中类“基因魔剪”机制首次揭示

美国麻省理工学院麦戈文脑研究所、麻省理工学院博德研究所和哈佛大学张锋团队在真核生物中发现了第一个可编程的RNA引导系统。29日发表于《自然》杂志上的论文称,这种基于Fanzor蛋白的系统能对人类基因组......

AI辅助创新蛋白聚类方法开发新型碱基编辑工具

中国科学院遗传与发育生物学研究所高彩霞研究组开创性地运用AI辅助结构预测,建立起基于三级结构的蛋白聚类方法,并扩展为全新的脱氨酶挖掘体系,开发了一系列具有中国自主知识产权的新型碱基编辑工具。该工作为蛋......