发布时间:2018-01-04 14:18 原文链接: 端粒效应——揭开染色体与衰老之间的秘密

  衰老是个古老而神秘的话题,长生不老是人类一直追求的目标,而生物体的衰老却是一个必然的过程,是随着时间的推移,机体从构成物质、组织结构到生理功能的丧失退化的过程。

  近日,《实验医学杂志》刊发的一项研究表明我们的染色体会随着机体的变老而一起变老。那么我们能不能通过改变染色体来延缓衰老、保持健康长寿呢?目前,世界上很多科学家都在尝试解决这一问题。

  2016年《自然》杂志上的一项关于衰老的研究成果入选《科学》杂志甄选的“2016年十大突破”。无独有偶,近日,中科院上海神经科学研究所的蔡时青研究员课题组在《自然》杂志上发表的研究成果首次阐述了个体之间衰老速率差异的遗传基础,是近年来衰老领域取得的重大突破。这些最新成果使抗衰老的研究热度再次升高。

  染色体的“保镖”

  在生物的细胞核中,有一种载有遗传信息的线状物质,它们被称为“染色体”。染色体主要由DNA和蛋白质组成,是生物生长发育的“指导手册”。在染色体的末端有个染色体的“保镖”,即端粒。人类的端粒由6个碱基的重复序列和结合蛋白组成,它对染色体的功能有着重要的作用。

  端粒可类比为鞋带两端防止磨损的塑料套,像塑料套保护鞋带一样保护染色体。它能在保持染色体完整的同时,防止染色体彼此相互粘连,保护染色体上DNA的安全。遗憾的是,这个保镖需要不断作出牺牲:细胞每分裂一次,端粒就会缩短一点,细胞分裂次数越多,端粒就缩短得越多。通俗地说,就是细胞越老,端粒就越短。当它们变得太短时,细胞就不再分裂,开始变得不活跃、衰老直至死亡。因此,端粒又被称为生命体的“分子时钟”。

  端粒酶是细胞中一种负责延长端粒的酶。在年轻的细胞中,它在端粒末端加上碱基,可以让端粒免受过度磨损,使细胞分裂的次数增加。但随着细胞分裂,端粒酶的数量不足,端粒逐渐缩短,细胞开始老化。如果端粒酶的活性很高,就能保持端粒的长度,延缓细胞的老化。三位美国科学家因“发现端粒和端粒酶是如何保护染色体的”获得2009年诺贝尔生理学或医学奖。但端粒酶也会帮助无用细胞的增殖,并促进癌症的形成,因此也被喻为“炸弹引信”。

  “长生不老”的钥匙

  因为端粒酶在细胞老化和癌化过程中都起着关键性的作用,所以被认为是“长生不老”的钥匙。而实验研究表明,端粒也不是永远只会变短,实际上也有可能变长。

  不久前,休斯顿卫理公会研究所的科学家采用RNA疗法的技术,发现可逆转细胞衰老。研究人员发现早衰症患儿的染色体端粒比常人要短,因此他们以儿童早衰症作为研究对象。该疗法首先将特定的RNA送入细胞内,RNA再向细胞传达“延长染色体端粒”的信息,从而促进端粒酶的生成。利用这种疗法,所有的细胞衰老标记物都得到了逆转。研究者Cooke表示,我们至少可以减缓或阻断患者机体中衰老的进度,他正计划对现有的疗法进行改进。

  此外,因为端粒酶对肿瘤细胞的永生化是必要的,所以它可以作为抗肿瘤药物的重要靶点。目前市场上基于端粒效应用于延长端粒的“端粒酶类”药物和检测试剂有很多,这些研究成果也引发了大量的炒作,有病例因服用增强端粒酶活性的药物而导致患上癌症。

  今年8月份,我国首个利用端粒酶技术进行肺部肿瘤辅助诊断的检测试剂——“端粒酶逆转录酶亚基(hTERT)mRNA检测试剂盒”经国家食品药品监督管理总局批准上市,为肺癌辅助诊断提供了一种快速、便捷的检测手段。

  另外,衰老不是一个恒定不变的过程,而且衰老速率受到多种因素的影响。《细胞》杂志上的一篇关于衰老的文章就总结出影响衰老的九大因素,除了端粒的耗损,还有营养代谢失调等因素。

  2009年诺贝尔生理学或医学奖获得者之一伊丽莎白·布莱克本在2017年1月份出版了《端粒效应》一书,书中介绍生活压力对端粒长度也有影响:母亲照顾生病的小孩的时间越长,她的端粒长度就越短,压力让她们的衰老加速。年龄越大的人,染色体末端越短;抽烟喝酒的人,染色体末端也较短。

  “抗老之路”任重而道远

  事实上,生命的智慧远比我们想象的深远得多。许多疾病都是由衰老造成的,如果我们能通过端粒效应解决这个问题,就能解决很多疾病。

  目前,各种新技术成功延长了染色体端粒的长度,这为战胜衰老导致的疾病带来了希望。科学家也正在研究是否能用药物遏制端粒酶,从而治疗癌症。药物能够延长端粒是极好的,但使用药物延长端粒很危险,我们还需要严格地测试它,改变生活方式比药物安全得多。

  深入研究染色体变化与衰老、癌症之间的关系,将是未来生命科学的重要突破。随着分子生物学的发展,衰老研究也将进入基因时代。生命科学发展至今,许多生命的奥秘还是未知数,有待进一步探究。因此,我们在抗衰老问题上还有很长的路要走。


相关文章

缓步动物蛋白或助人类抗衰老

科技日报北京4月1日电 (记者刘霞)据美国趣味科学网站3月30日报道,美国怀俄明州立大学分子生物学系科学家实验研究发现,从微型缓步动物身上提取的蛋白质减缓了人类细胞新陈代谢的速度,表明这些蛋......

岛津原子力显微镜在细胞及分子生物学的研究进展

 原子力显微镜作为一种三维形貌观察工具,不仅具备超高分辨率,而且支持在液体环境下工作,是一种理想的生命科学/医学观测设备。除了形貌观察外,原子力显微镜还可以对多种表面属性进行定量观测。例如,......

2024年中国细胞培养基行业市场现状及发展趋势分析

行业主要上市公司:奥浦迈(688293),近岸蛋白(688137),中牧实业(600195),双鹭实业(002038),通化东宝(600867),冠昊生物(300238),三生国健(688336),洁......

西北大学团队“topdown”质谱法|单日分析上千个单细胞

西北大学研究团队开发出一种基于电荷检测质谱技术的自顶向下(top-down)的单细胞蛋白质组学方法。该方法在本月发表于BioRxiv预印本上,科学家们用此方法可以每天检测1000多个单细胞中的完整蛋白......

世界首例克隆藏羊在青海诞生

近日,由西北农林科技大学团队联合青海省西宁市动物疫病预防控制中心培育的“克隆藏羊”在青海顺利出生。这是国内首次采用体细胞克隆技术对现存藏羊群体中的优良个体进行种质复原保存,并用于良种藏羊高效繁育。初生......

阻碍胶质母细胞瘤化疗反应的新障碍被发现

胶质母细胞瘤(GBM)是原发性脑和中枢神经系统(CNS)肿瘤中最具侵袭性和致命性的一种。手术切除肿瘤后,胶质母细胞瘤患者通常接受放射治疗和化疗药物替莫唑胺(TMZ)治疗。尽管患者最初对该药物反应良好,......

稀有脂肪分子帮助细胞死亡

哥伦比亚大学的科学家报告说,他们发现一种罕见的脂质是铁死亡(一种细胞死亡形式)的关键驱动因素。这些发现提供了关于细胞在铁死亡过程中如何死亡的新细节,并可以提高人们对如何在神经退行性疾病等有害发生铁死亡......

纳米材料与细胞相互作用研究获新进展

近日,山东大学晶体材料国家重点实验室教授仇吉川、刘宏与基础医学院教授郝爱军发展了一种用于改善纳米颗粒与细胞的相互作用的普适性策略。研究成果发表于《德国应用化学》。纳米材料在药物递送、组织工程、生物成像......

《细胞》编辑团队发布创刊50周年祝词

1月11日,《细胞》(Cell)编辑团队向《中国科学报》发来创刊50周年祝词,回顾创刊历程,并展望了未来的发展。以下为相关内容:1984年,《细胞》创刊。自创刊伊始,《细胞》的目标便是发表“令人兴奋的......

生物反应器国重实验室新进展!纳米机械天然杂合细胞

近日,华东理工大学生物反应器工程国家重点实验室叶邦策教授课题组在DNA传感装置的设计及生物纳米杂合系统研究中取得了重要进展。该研究构建了纳米机械-天然杂合细胞,赋予了天然细胞非传统信号分子的感知、分析......