Antpedia LOGO WIKI资讯

诱导多功能干细胞“不忘”原初组织

两个美国科研小组宣称,他们首次发现,成人细胞在被重新编程为诱导多功能干细胞(iPS)的过程中并不会放弃其对原始组织的“记忆”,在直接使用iPS细胞分化成移植用人体组织时,可能会产生问题。 其中一个科研小组来自美国波士顿儿童医院,该小组领导人乔治·戴利在19日的《自然》杂志网络版上表示,iPS细胞会保留对用来制造它的原初组织(比如皮肤)的“记忆”,这一新发现对目前方兴未艾的干细胞临床和科研提出了挑战。 干细胞是未充分分化、具有自我更新和分化潜能的细胞。科学家认为,使用干细胞,可以诱导分化出可替换掉人体病变组织的任何组织和细胞。另外,科学家还希望使用干细胞修改基因突变,剔除致病基因,从根本上消除疾病。 基于此,干细胞研究广受关注。迄今为止,唯一被证明能够安全和有效地制造出干细胞的方式是以存在巨大伦理争议的胚胎为基础,通过细胞核移植或者克隆获得胚胎干细胞。 2007年11月,美日科......阅读全文

这十年,诱导多能干细胞如何改变整个世界?

  诱导多能干细胞被期望可以带来一场医学革命,但在其发现十年后,诱导多能干细胞慢慢开始转变为生物学研究;日本京都大学(Kyoto University)的科学家山中伸弥(Shinya Yamanaka)曾因将成体细胞重编程为胚胎样状态而获得诺贝尔生理学及医学奖,有一天当他的学生Kazutoshi T

Nature:十年间,诱导性多能干细胞如何改变世界?

  2006年,诱导性多能干细胞(induced pluripotent stem cells,iPSCs)首次登上历史舞台。这一有着类似于胚胎干细胞(ESCs)功能的特殊细胞为再生医学带来了新视角和福音。科学家对其最初的设想是重编程成体细胞,并诱导其分化成干细胞、神经元或者其他任何细胞,最终用于疾

重编程所获iPS细胞仍具原始组织信息

  两个美国科研小组宣称,他们首次发现,成人细胞在被重新编程为诱导多功能干细胞(iPS)的过程中并不会放弃其对原始组织的“记忆”,在直接使用iPS细胞分化成移植用人体组织时,可能会产生问题。  其中一个科研小组来自美国波士顿儿童医院,该小组领导人乔治·戴利在19日的《自然》杂志网络版上表示

近年来体细胞领域重要研究进展一览

  近日,发表在国际杂志Cell上的一项最新研究中,来自中国上海的研究人员在世界上率先利用一种经过改进的体细胞核移植技术克隆出第一批非人灵长类动物---食蟹猴,研究人员希望利用这种改进的技术培育出遗传上相同的灵长类动物群体,以便提供更好的癌症等人类疾病的动物模型。  那么近年来体细胞研究领域还有哪些

细胞编程:未来人类或可实现“返老还童”

  在未来,因器官移植而导致的器官买卖或许将会绝迹,人们将可能从自己身上采集细胞为自己治病,不停地更新自己,在另一个意义上实现“返老还童”。   今年 10 月 8 日,英国科学家约翰・格登和日本科学家山中伸弥因为“发现成熟细胞可以被重新编程为多功能干细胞”而获得诺贝尔奖。   他们的

德国科学家重组人类羊水细胞获得诱导多能干细胞

从图片上部的两幅图的对比中可以看到,羊水细胞从外表看来与其它胚胎干细胞有很大区别;左下角的图片表示羊水细胞的iPS细胞可产出蛋白质的制造者之一“OCT4”;右下角的图片表示iPS细胞能够形成人体各种器官和组织的干细胞。   据国外媒体报道,德国柏林的科学家近日从人类胚胎的羊

干细胞在医学领域的前景与忧思

  近日,美国Advanced Stem cell 公司首席科学家Robert Lanza成功利用胚胎干细胞改善两种老年衰替性眼病。而就在不到一个月前,日本神户理化研究所(RIKEN)发育生物学中心的眼科专家高桥雅,利用iPS细胞来治疗与年龄相关的视网膜退化疾病。干细胞在医学上的作用日益显现。  干

《科学》杂志评出2007年十大科技突破

北京时间12月21日消息,美国《科学》杂志12月21日公布了2007年度科学突破,“科学家发现人类基因组差异”荣登榜首,成为2007年度最大的科学突破。以下是《科学》杂志年度十大科学突破名单: 1.揭开人类基因组个体差异之谜 揭开人类基因组个体差异之谜 在更为先进的DNA排序技术和基因组

iPS,转分化和间接谱系转换之间的区别

  日前,来自美国索尔克生物研究所的研究人员研发了一种“间接谱系转换”的细胞重编程新方法,能从成熟细胞中获得干细胞,被认为是超越了“iPS”的新技术,那么这项技术能够跨过再生医学的屏障吗?   诱导性多能干细胞:细胞的分化过程曾被认为是不可逆转的,而重编程技术能够迫使成熟细胞接受新命运而“返老还童

Cell Stem Cell:iPS进入临床的重要一步

  斯坦福大学医学院的研究人员最近证实,源自诱导多能干细胞的心肌细胞能忠实反映供体原始心脏组织中关键基因的表达模式。这些细胞可以作为患者的替身,帮助医生们判断治疗药物的副作用。这项重要的研究成果于八月十八日发表在Cell Stem Cell杂志上。  干细胞能够分化成为机体内任何类型的细胞,既是研究

科学时报年终专稿之生命科学篇 裴钢:风景这边更好

编者的话 对于科学和技术的重大进展来说,一年并不是一个很长的时间。然而科学与技术的任何进步,都是科学家在日常工作中留下的一个个脚印。刚刚过去的2007年,科学与技术的各个领域可谓异彩纷呈。为了让读者对此有全景式的了解,本报特别约请各领域专家梳理并点评了科学与技术发展的亮点,并展望令人期待的

5月13日《自然》杂志精选

封面故事: “伯吉斯页岩型”动物群落 在早奥陶世地层被发现   加拿大的伯吉斯页岩以含有各种各样软体动物化石而出名,这些动物来自寒武纪中期,距今约5.1亿年,它们提供了一个了解早期海洋动物的窗口。现在,人们知道类似的动物来自相距非常远的不同地方,如中国和

人类“返老还童”不是梦?重新编码干细胞或逆转衰老

  据国外媒体报道,斯坦福大学研究生殖科学的研究教授维托里奥·塞巴斯蒂亚诺(Vittorio Sebastiano)的部分工作就是照顾几百万个干细胞。这些干细胞存放在斯坦福大学的洛利·罗凯干细胞研究大楼(美国最大的干细胞研究机构之一)深处,塞巴斯蒂亚诺负责维持它们的温度和湿度。在他周围还有众多研究人

Nature:使细胞“失忆”,让它变身干细胞

  皮肤或血液的成熟细胞都有自己的“记忆”,即保持着从胚胎细胞变成特化成熟细胞的记录。最近,美国麻省总医院哈佛干细胞研究所与奥地利科学家合作,识别出4种调控因子,能让细胞重新编程变得更容易、更快、更有效。  人体每个细胞均有相同的基因组,发育过程中这些基因如何开关,决定了它们将变成哪种细胞。控制这些

科学家识别出4种调控因子 使细胞"失忆"让它变身干细胞

  皮肤或血液的成熟细胞都有自己的“记忆”,即保持着从胚胎细胞变成特化成熟细胞的记录。最近,美国麻省总医院哈佛干细胞研究所与奥地利科学家合作,识别出4种调控因子,能让细胞重新编程变得更容易、更快、更有效。  人体每个细胞均有相同的基因组,发育过程中这些基因如何开关,决定了它们将变成哪种细胞。控制这些

2013年世界科技发展回顾 生物医学领域收获颇丰

美国  遗传学研究深入揭示、利用基因机制;细胞研究让多种细胞互换“身份”;再生医学造出多种器官组织。  田学科 (本报驻美国记者)在遗传学研究领域,杜克大学模仿人体细胞内复杂的基因调控过程,模拟出多种蛋白质如何通过复杂相互作用调控一个基因。  斯坦福大学设计出一种由DNA和RNA制成的生物晶体管——

科学家识别出4种调控因子 使细胞“失忆”让它变身干细胞

  皮肤或血液的成熟细胞都有自己的“记忆”,即保持着从胚胎细胞变成特化成熟细胞的记录。最近,美国麻省总医院哈佛干细胞研究所与奥地利科学家合作,识别出4种调控因子,能让细胞重新编程变得更容易、更快、更有效。  人体每个细胞均有相同的基因组,发育过程中这些基因如何开关,决定了它们将变成哪种细胞。控制这些

这些新的研究发现或会让你眼前一亮!

  在科学研究道路上,科学家们常常会有一些不经意、让他们眼前为之一亮重要研究发现,而这些研究结果都是他们首次阐明或发现的,本文中,小编就对这些重要研究成果进行整理,分享给大家!  【1】Nature:重磅!解码人体免疫系统!首次对人体免疫系统进行全面测序  doi:10.1038/s41586-01

9月16日《自然》杂志精选

 三种干细胞类型之间的差别  通过利用不同转录因子对分化的成年细胞重新编程而产生的“诱导多能干”(iPS)细胞,具有“体细胞核转移”(SCNT)所产生的“胚胎干”(ES)细胞和来自自然受精的胚胎的ES细胞的很多典型性质。然而,这三个细胞类型并不是相同的,现在它们之间一个有趣

Science惊人发现:细胞重编程并不是我们想象的那样

本期Science杂志发表的一项研究指出,细胞重编程的发生与我们的想象并不完全一样。西班牙国家癌症研究中心CNIO的研究团队发现,组织损伤是细胞回到胚胎状态的一个关键因素。受损细胞会给旁边的细胞发送信号使其获得胚胎特性,进而促成组织修复。iPS细胞重编程为山中伸弥赢得了诺贝尔奖,也打开了再生医学的大

Science惊人发现:细胞重编程并不是我们想象的那样

  本期Science杂志发表的一项研究指出,细胞重编程的发生与我们的想象并不完全一样。西班牙国家癌症研究中心CNIO的研究团队发现,组织损伤是细胞回到胚胎状态的一个关键因素。受损细胞会给旁边的细胞发送信号使其获得胚胎特性,进而促成组织修复。  iPS细胞重编程为山中伸弥赢得了诺贝尔奖,也打开了再生

Nature头条:重大突破细胞重编程新技术

  当前将分化的成体细胞回复到干细胞样状态的方法主要有两种:采用核移植置换细胞核物质,或是诱导多能基因表达。在发表于1月29日《自然》(Nature)杂志上的两篇新研究论文中,研究人员开发出了一种完全不同的技术,这一技术是基于细胞承受机械应力或低pH值等环境刺激。   Whitehead研究所干细

2014年世界生物医学科技发展回顾

  生物 医学  美 国  遗传研究更深入掌控基因;细胞学攻克检测与治疗多项难题;脑科学研究记忆刺激技术帮助恢复记忆,发现大脑存在“意识开关”和“信息交换台”。  田学科(本报驻美国记者)遗传学方面,杜克大学绘制出综合酵母菌基因脆弱位点图,而脆弱位点所在区域正是DNA复制机变慢或停顿的地方

全面回顾:2014年全球生物医学突破进展

  美 国  遗传研究更深入掌控基因;细胞学攻克检测与治疗多项难题;脑科学研究记忆刺激技术帮助恢复记忆,发现大脑存在“意识开关”和“信息交换台”。  遗传学方面,杜克大学绘制出综合酵母菌基因脆弱位点图,而脆弱位点所在区域正是DNA复制机变慢或停顿的地方,揭示了许多固体肿瘤中基因异常的源头;冷泉港实验

生物工程技术促进人类健康进展一览

  1. NEJM:工程胰岛细胞移植让一名糖尿病患者恢复胰岛素产生能力  1型糖尿病让一名43岁的女性依赖于胰岛素。如今,在一项新的研究中,医生们通过将工程胰岛细胞移植到她的腹部恢复了她的身体产生这种激素的能力。这名病人在接受移植一年后仍然保持胰岛素不依赖性,而且根据一篇新闻稿的报道,她是测试这种糖

2012国家自然科学基金评审结果名单之复旦大学(生物类)

  来自国家自然科学基金委员会的消息,国家自然科学基金委员会公布了2012年度面上项目、重点项目、重大国际(地区)合作研究项目、青年科学基金项目、地区科学基金项目、海外及港澳学者合作研究基金项目、科学仪器基础研究专款项目等方面的评审结果。有关评审结果将通知相关依托单位,其科研管理人员可登录

医学科技发展“十二五”规划发布

  关于印发医学科技发展“十二五”规划的通知各省、自治区、直辖市、计划单列市有关部门,各有关单位:   为了贯彻落实《国家中长期科学和技术发展规划纲要(2006—2020年)》,指导医学科技工作发展,科学技术部、卫生部、国家食品药品监督管理局、国家中医药管理局、教育部、国家人口和计划生育

【盘点】衰老与疾病的关联性研究进展

  人为什么会变老?对于人类来说,如何才能长生不老真的是一个令人着迷的问题。但是至今为止都没有一个让人满意的答案。衰老一直是生命过程中的核心环节,也是影响整个人类社会健康发展的重要问题。目前世界各国均面临着严重的人口老龄化,数据显示到2050年约三分之一的中国人口年龄将超过60岁。因此,深入了解衰老

George Church专访:CRISPR是如何引领基因编辑革命的?

  George Church:哈佛医学院著名遗传学家  11月26日,Nature Communications杂志发表了遗传学界的大牛George M. Church领导哈佛医学院的团队,在人iPS细胞中进行了CRISPR基因编辑。他们将全基因组测序和靶向深度测序结合起来,评估了Cas9编辑iP

2020年世界科技发展回顾·生物技术

以色列 研究抗癌、抗衰老疑难杂症 超高分辨率显微镜看到活细胞 本报驻以色列记者 毛黎 特拉维夫大学率先证明,通过CRISPR基因编辑技术能有效地破坏动物癌细胞DNA,同时保持周围其他细胞组织完好无损;舍巴医学中心在全球首次试验性采用“逆向个性化药物”(RPM)治疗癌症患者;特拉维夫大学研