Antpedia LOGO WIKI资讯

贵金属纳米结构表面等离激元研究获系列进展

近期,中国科学院合肥物质科学研究院固体物理研究所副研究员张俊喜与中国科学技术大学光学与光学工程系、英国Aston大学光子技术研究所(AIPT)、澳大利亚国立大学非线性物理中心等单位科研人员合作,在贵金属纳米结构表面等离激元研究中取得系列进展。 实现光与物质之间强的相互作用在设计光子器件上有重要意义,构筑共振腔体是实现光与物质强相互作用的重要途径。传统介电共振腔体有高的品质因子,但模式体积大,要减小其物理尺寸到亚波长受到光衍射极限限制。相比之下,表面等离激元共振腔能突破光衍射极限,能在亚波长和纳米尺度上实现对光子的操纵,因而它将在光源、传感和表面增强光谱等方面有重要的应用前景。当前影响表面等离激元共振腔性能的瓶颈是损耗大,如何控制表面等离激元模式和耦合界面是突破这一瓶颈的关键。 张俊喜等在表面等离激元共振腔模式方面取得新的突破,在金纳米管阵列超材料腔体中发现了一种表面等离激元新的杂化模式。发展氧化铝模板电沉积技术控制制备金......阅读全文

贵金属纳米结构表面等离激元研究获系列进展

  近期,中国科学院合肥物质科学研究院固体物理研究所副研究员张俊喜与中国科学技术大学光学与光学工程系、英国Aston大学光子技术研究所(AIPT)、澳大利亚国立大学非线性物理中心等单位科研人员合作,在贵金属纳米结构表面等离激元研究中取得系列进展。  实现光与物质之间强的相互作用在设计光子器件上有重要

表面等离激元增强分子光谱到表面等离激元介导化学反应

   田中群教授课题组从表面等离激元增强分子光谱到表面等离激元介导化学反应研究成果综述"From plasmon-enhanced molecular spectroscopy to plasmon-mediated chemical reactions",近日发表在国际学术期刊Nature Rev

深圳大学表面等离激元光镊操控金属纳米线方面获新进展

  近日,深圳大学光电工程学院微纳光学研究所袁小聪教授课题组在表面等离激元光镊操控金属纳米线方面研究取得了新进展。袁小聪教授和闵长俊副教授在国际纳米科学技术领域权威刊物《Nano Letters》(2014年该刊影响因子为12.94)发表了题为《Plasmonic Hybridization Ind

等离激元纳米颗粒的可控合成和应用

  等离激元纳米颗粒的可控合成和应用一直是近年来的研究热点。在过去几十年的研究中,人们发现纳米颗粒的形状会显著影响表面等离激元共振的模式,从而影响颗粒对光的吸收、散射、表面电场分布等等。为了满足不同的应用需求,科学家一直在不断尝试用化学手段来调控纳米颗粒的生长,以获得更丰富的形貌和更稳定的产率,同时

激子-表面等离激元耦合效应实现光子信号操纵

  光子学器件具有电子学器件无法比拟的高速、高带宽和低能耗等优点,在光信息处理和光子学计算中扮演着非常重要的角色。中科院化学研究所光化学院重点实验室的科研人员近年来一直致力于低维有机光子学方面的研究(Acc. Chem. Res.,2010,43,409-418,Adv. Funct. Mate

长春应化所二维等离激元纳米结构研究取得新进展

  二维金属等离激元纳米结构以其独特的平面限域结构和表面等离激元共振耦合效应,已成为纳米电子学、能源催化和传感检测等领域的研究热点。然而,由于缺乏对等离子体-电子耦合效应的深入认识以及电极界面和材料的精确构筑方法,二维金属等离激元纳米结构的设计和应用一直面临着重大挑战。  近期,中国科学院长春应用化

德研发出世界首个表面等离激元电路

  如何在纳米尺寸的集成芯片上实现像操纵电子一样来操控光子是光电子技术未来发展的关键。德国维尔茨堡大学的物理学家近日成功研发出世界首个表面等离激元电路,在可能取代“集成电路”的新一代信息技术领域取得进展。   在计算机技术领域,多年前就不再提高经典处理器的时钟频率,增加计算能力只能通过应用多个处理

金属表面纳米结构制备方法有哪些

  纳米结构的制备方法  纳米粉体、纳米纤维、纳米薄膜、纳米块体、纳米复合材料和纳米结构等纳米材料的制备方法有的相同,有的不相同,有的原理上相同,但工艺上有显著的差异[6]。从目前的研究来看,纳米结构的制备方法大体可分为:自组装法、人工构筑法、模板法。

长春光机所在表面等离激元模式耦合研究中取得进展

  近日,中国科学院长春光学精密机械与物理研究所光学技术中心光学与功能薄膜研究组,基于等离激元杂化模式,提出了一种在保证低欧姆损耗的同时,能对光场产生强烈束缚作用的复合光栅纳米结构。研究成果发表在Advanced Optical Materials上。该工作获得了国家自然科学基金重点项目和面上项目的

长春光机所在表面等离激元模式耦合研究中获得进展

  近日,中科院长春光学精密机械与物理研究所光学技术中心先进光学薄膜与功能薄膜技术研究组基于等离激元杂化模式,提出了一种在保证低欧姆损耗的同时,能对光场产生强烈束缚作用的复合光栅纳米结构。相关研究成果发表在国际期刊《先进光学材料》(Advanced Optical Materials, DOI: 1