Antpedia LOGO WIKI资讯

高效率的钙钛矿太阳能电池IV曲线之后很小

越来越多的证据表明,在钙钛矿太阳能电池中流动离子的存在可以引起电流-电压曲线滞后。然而,它仍然是一个正在进行的辩论如何移动离子确切地影响设备的操作。我们使用带移动离子的漂移扩散模拟来描述预条件甲基铵碘化铅钙钛矿太阳能电池的iv曲线,并与实验结果进行比较。模拟结果表明,这种滞后与表面复合的程度和载流子的扩散长度有关。我们对具有高功率转换效率的钙钛矿太阳能电池的减少迟滞现象提供了详细的解释。我们发现,在高效率的太阳能电池中,离子迁移仍然存在,但不引起迟滞效应。在这些器件中,电荷抽取主要是由自由电子和空穴的扩散驱动的。 本篇文章采用paios多功能载流子特性分析系统及IV测量和分析数据,paios专用于太阳能电池瞬态光电特性及载流子特性的深入研究与分析;可对OPV太阳能电池、PVK钙钛矿太阳能电池、OLED器件和其他半导体器件中的载流子迁移率进行全面有效的分析和测量 测试功能:载流子迁移率  ......阅读全文

高效率的钙钛矿太阳能电池IV曲线之后很小

越来越多的证据表明,在钙钛矿太阳能电池中流动离子的存在可以引起电流-电压曲线滞后。然而,它仍然是一个正在进行的辩论如何移动离子确切地影响设备的操作。我们使用带移动离子的漂移扩散模拟来描述预条件甲基铵碘化铅钙钛矿太阳能电池的iv曲线,并与实验结果进行比较。模拟结果表明,这种滞后与表面复合的程度和载流子

高效率钙钛矿LED中的“光子回收”效应

  最近,剑桥大学与浙江大学的研究团队,在Nature Communications合作发表了题为“The role of photon recycling in perovskite light-emitting diodes”的论文,研究了高效率钙钛矿发光二极管(钙钛矿LED)中光子回收效应的影

宁波材料所:高效率柔性钙钛矿太阳能电池研究获进展

  随着光伏技术的快速发展,具有高效率和低成本特性的钙钛矿太阳能电池(PSCs)备受关注,具有替代传统晶硅电池的潜力。尤其是柔性钙钛矿太阳能电池(f-PSCs)在光伏建筑(BIPV)、分布式发电、便携式设备充电等领域具有广阔的应用前景,成为当前光伏领域研究的热点。然而,目前柔性钙钛矿太阳能电池所取得

柔性钙钛矿太阳能电池技术介绍

关于理想的光伏器件,其应当具有光电转换效率高、制造成本低、质量轻、寿命长等特点。以有机铅卤化物钙钛矿作为光吸收材料的太阳能电池,虽然具有较高的能量转换效率(约20%),且可以通过低成本、操作简单的溶液法制备获得,但由于其在自然环境下的持续工作稳定性较差,使其距离大规模商业化生产尚有一定距离。此外,随

新钙钛矿助力太阳能电池和LED

  卤化铅钙钛矿性能优异,能量转化率高,是最有前景的太阳能电池用半导体之一。爱荷华州立大学副教授,同时也是美国能源部埃姆斯实验室的科学家Javier Vela发现,混合卤化物钙钛矿比单一卤化物钙钛矿具有更多优点。为了研究混合卤化物钙钛矿的化学组成与结构对其性能的影响,Javier Vela教授与他的

钙钛矿太阳能电池:高效、稳定的器件性能

  稳定性、可放大性以及分子界面工程是目前钙钛矿太阳能电池(PSC)面临的几个重要挑战。近期,中山大学的毕冬勤教授等人与瑞士洛桑联邦理工大学的Michael Graetzel教授在Nature Communications上合作发表题为“Multifunctional molecular modul

基于钙钛矿的廉价柔性纤维太阳能电池

基于钙钛矿的廉价柔性纤维太阳能电池  对植入衣服的小型电子设备来说,纺织物太阳能电池是理想的电源。在应用化学杂志上,中国科学家介绍了纤维形式的新型太阳能电池,它们可被编织到纺织物中。这种柔韧同轴的电池基于钙钛矿材料和碳纳米管;因为具有高达3.3 %的能量转化效率和低制造成本,让它们脱颖而出

生产高效率及大面积的钙钛矿薄膜取得进展

  在过去的十年中,混合有机-无机金属卤化物钙钛矿太阳能电池 (PSC) 引起了广泛的关注,其功率转换效率 (PCE) 现在已超过 25%。升级高效且稳定的钙钛矿层是钙钛矿太阳能电池商业化中最具挑战性的问题之一。  2021年6月18日,武汉理工大学黄福志团队在Science 在线发表题为“Lead

钙钛矿太阳能电池研究获新进展

  大连理工大学副教授杨希川和博士研究生张福国近日研发的低成本、高效率新型钙钛矿太阳能电池展示出优异的稳定性,通过了室内1000小时的光照稳定性测试,为钙钛矿太阳能电池走向产业化解决了很多关键性难题。成果发表于《纳米—能源》。  钙钛矿电池具有成本低廉、工艺简单(适用于各种产业化技术,包括溶液操作、

日本提高钙钛矿太阳能电池转换率

  据日本当地媒体报道,针对新一代太阳能电池“钙钛矿太阳电池”材料,东京大学先端科学技术研究中心的科研人员,在不使用铷等稀有金属的前提下,实现了20.5%的高转换效率及稳定发电。研究通过添加地球上较多存在的钾元素,实现了结晶构造的稳定性。研究组在进行长期耐久性试验同时,面向松下、东芝等企业的实用化进