Antpedia LOGO WIKI资讯

一脑内神经回路与精神紧张时发热有关

日前,来自京都大学的研究小组在动物实验中发现了与哺乳动物精神紧张时发热有关的重要脑内神经回路。这一发现将有助于开发治疗应激障碍(stress disorder)的方法。这一成果的论文已经刊登在新一期的美国《细胞-代谢》杂志网络版上。 包括人类在内的很多哺乳动物在精神紧张时,会出现体温、脉搏、血压上升等生理反应,这些生理反应被认为能够提高机体功能,在生命面临危险时有利于提高生存率,因此具有生物学意义。 不过,在现代社会中,一些人由于长期面临过多的精神压力,导致生理调节出现异常,患上各种疾病,特别是心因性发热由于是精神紧张导致的,用解热药也无效,非常难以治疗。虽然研究人员认为脑内的神经回路存在导致这种应激反应和疾病的根本机制,不过一直没有弄清实际状况。 京都大学副教授中村和弘率领的研究小组发现,大鼠因受到体型更大的大鼠攻击而精神紧张时,密集分布在背部的棕色脂肪细胞会发热,从而导致体温上升。 棕色脂肪负责分解引发肥胖的白......阅读全文

一脑内神经回路与精神紧张时发热有关

   日前,来自京都大学的研究小组在动物实验中发现了与哺乳动物精神紧张时发热有关的重要脑内神经回路。这一发现将有助于开发治疗应激障碍(stress disorder)的方法。这一成果的论文已经刊登在新一期的美国《细胞-代谢》杂志网络版上。  包括人类在内的很多哺乳动物在精神紧张时,会出现体温、脉搏、

精神疾病抛弃药疗修改大脑神经回路成研发热点

 用药物来治疗精神类疾病的时代或许已经日薄西山了。尽管仍然有很多医生会在临床治疗中给患者开具精神类药物,但是,一种全新的理解并治疗精神类疾病的办法已经浮出水面。业界人士不再强调研制药剂,而是转向通过对大脑进行物理干预来修改特定神经回路的功能,从而治疗精神类疾病。 药物已成“昨日黄花” 表明药物被

研究揭示斑马鱼“自我定位”神经回路

斑马鱼幼鱼能够弄清它们在哪里,去过哪里,以及如何回到原来的位置。幼体斑马鱼在被洋流推离航道后如何追踪自己的位置并导航呢?科学家发现,这与一种多区域的大脑回路有关。相关研究近日发表于《细胞》。 “我们研究了一种行为,在这种行为中,斑马鱼幼鱼必须记住过去的位移,以准确地保持它们的位置,因为水流可能把

精神神经疾病的研究取得进展

  当前,全世界约有7000万至1亿人患有早期阿尔茨海默病,10亿人正遭受精神障碍困扰。精神神经系统疾病的新药创制迫在眉睫。  6月16日,《自然》在线发表了两项“背靠背”研究成果。一篇题为《代谢型谷氨酸受体mGlu2和mGlu4与G蛋白复合物结构》,另一篇题为《人源mGlu2和mGlu7同源和异源

J Neurosci:关键神经回路调控酗酒反应研究

  科学家已经知道,大脑的杏仁核中心区(CeA)在与饮酒有关的行为中起着重要作用。然而,目前我们仍不清楚介导这些行为的确切脑细胞类型。  现在,UNC医学院的科学家发现CeA中的特定神经元会导致类似酗酒行为的发生。发表在《Journal of Neuroscience》上的这项研究揭示了一种特定的神

新技术可自由开关大脑神经回路

美国麻省理工学院教授、诺贝尔奖得主利根川进在1月24日的《科学》(Science)杂志网络版上报告说,他们开发出一种可自由开关实验鼠脑神经回路的技术。 利根川进是日本唯一一名诺贝尔生理学或医学奖得主,现为美国麻省理工学院脑科学中心负责人。他领导的研究小组通过转基因技术将控制破伤风毒素合成的基因植入实

移植神经元能重建受损大脑回路

  英国《自然》杂志26日在线发表的一篇神经科学论文公布了一项重要脑科学研究成果:移植胚胎神经元能重建受损的成年小鼠大脑中的回路,并恢复其功能。这一发现对神经移植领域有极大的激励作用,该领域正在寻求通过引入“替代”细胞来修复脑损伤和疾病。   传统观点和权威曾指出,大脑不能进行自我修复。随着脑科学研

移植神经元能重建受损大脑回路

  英国《自然》杂志10月26日在线发表的一篇神经科学论文公布了一项重要脑科学研究成果:移植胚胎神经元能重建受损的成年小鼠大脑中的回路,并恢复其功能。这一发现对神经移植领域有极大的激励作用,该领域正在寻求通过引入“替代”细胞来修复脑损伤和疾病。  传统观点和权威曾指出,大脑不能进行自我修复。随着脑科

Cell:神经元识别标签或帮助阐明机体大脑的神经回路

  人类的大脑是由神经元的复杂回路组成的,而神经元是一类可以通过电化学信号来传递信息的细胞,类似于电脑的网络一样,神经元回路必须以特殊的方式互相连接才能够正常发挥作用,但在人类大脑中数以亿万计的神经元如何进行连接呢?而且神经元如何同正确的细胞进行连接?长期以来科学家们不断搜寻可以标记细胞形成连接的标

慢性疼痛重新连接了脑中的动力神经回路

  据Neil Schwartz及其同事的一项新的研究披露,慢性疼痛会引起脑的某个区域发生变化从而导致在小鼠中的动力的下降。慢性疼痛会在一种叫做甘丙肽的神经肽的帮助下让伏隔核中的神经元的连接改变,从而导致动力不足的行为。但是,研究人员还注意到,该影响可通过阻断甘丙肽的作用而被逆转。临床医生知道,在人