清华大学中科院Nature子刊CRISPRi多重基因条件性敲低平台

CRISPR应用广泛,其中一种叫做CRISPRi的方法利用了无酶活性的Cas9 (dCas9)融合KRAB转录抑制结构域,CRISPRi不切割靶基因,而是在dCas9靶向转录起始位点(TSS)时降低靶基因的表达。利用测序来读取sgRNA的相对富集/或耗竭,这一技术也被应用于全基因组范围内调查基因功能。 来自清华-北大生命科学联合中心,中科院北京基因组所的研究人员发表了题为“CRISPR interference-based specific and efficient gene inactivation in the brain”的文章,利用 CRISPRi(CRISPR interference),在动物脑内进行了多重基因条件性敲低,为在体研究复杂蛋白复合物的功能和多基因神经疾病的发病机理提供了重要的工具。 这一研究成果公布在2月5日Nature Neuroscience杂志上,文章的通讯作者为清华大学生科院姚骏和中......阅读全文

齐磊博士Cell发布CRISPRi研究新成果

  来自斯坦福大学、加州大学旧金山分校的研究人员报告称,他们利用CRISPR干扰(CRISPRi)技术,对枯草杆菌的必需基因进行了全面的功能分析。这项研究发布在5月26日的《细胞》(Cell)杂志上。  斯坦福大学的齐磊(Lei S. Qi)博士、Kerwyn Casey Huang博士,以及加州大

齐磊博士Cell发布CRISPRi研究新成果

  来自斯坦福大学、加州大学旧金山分校的研究人员报告称,他们利用CRISPR干扰(CRISPRi)技术,对枯草杆菌的必需基因进行了全面的功能分析。这项研究发布在5月26日的《细胞》(Cell)杂志上。  斯坦福大学的齐磊(Lei S. Qi)博士、Kerwyn Casey Huang博士,以及加州大

清华大学-中科院Nature子刊-CRISPRi多重基因条件性敲低平台

   CRISPR应用广泛,其中一种叫做CRISPRi的方法利用了无酶活性的Cas9 (dCas9)融合KRAB转录抑制结构域,CRISPRi不切割靶基因,而是在dCas9靶向转录起始位点(TSS)时降低靶基因的表达。利用测序来读取sgRNA的相对富集/或耗竭,这一技术也被应用于全基因组范围内调查基

华人先锋《Nature-Methods》利用CRISPRi绘制遗传互作图谱

  斯坦福大学亓磊(Lei Stanley Qi)教授早年毕业于清华大学,现任斯坦福大学生物工程学、化学和系统生物学系的助理教授,近年来他在CRISPR研究领域取得了一系列突破性进展,比如第一次采用CRISPR-Cas9系统的变种技术,改变了读取诱导多能干细胞(iPSCs)基因组的方式(由此入选了生

“基因剪刀”出手应对抗生素耐药性

  据英国《自然·微生物学》杂志近日发表的一项研究,美国研究人员报告称,他们利用被称为“基因剪刀”的基因编辑技术,开发出一个新系统,可以确定某种特定抗生素能靶向作用于致病菌的哪些基因。该成果将用于改进现有抗生素效果,或帮助人类开发出新型抗生素。   致病菌对抗生素产生耐药性,已然是严重的全球性公

“基因剪刀”出手应对抗生素耐药性

   据英国《自然·微生物学》杂志近日发表的一项研究,美国研究人员报告称,他们利用被称为“基因剪刀”的基因编辑技术,开发出一个新系统,可以确定某种特定抗生素能靶向作用于致病菌的哪些基因。该成果将用于改进现有抗生素效果,或帮助人类开发出新型抗生素。   致病菌对抗生素产生耐药性,已然是严重的全球性

敲降斑马鱼基因的方法学比较

  一、基因敲降的前期准备工作相同   1.1 生物信息学分析目标基因在斑马鱼早期胚胎发送过程中是否有表达。   1.2 收集斑马鱼早期发育胚胎(通常为48 hpf前的胚胎),提取总RNA,然后进行体外转录(RT)。   1.3 设计检测目标基因表达的PCR引物,以1.2获得的cDNA为模板,

敲降斑马鱼基因的方法学比较

一、基因敲降的前期准备工作相同1.1 生物信息学分析目标基因在斑马鱼早期胚胎发送过程中是否有表达。1.2 收集斑马鱼早期发育胚胎(通常为48 hpf前的胚胎),提取总RNA,然后进行体外转录(RT)。1.3 设计检测目标基因表达的PCR引物,以1.2获得的cDNA为模板,进行PCR扩增,确认目标基因

敲降斑马鱼基因的方法学比较

  一、基因敲降的前期准备工作相同   1.1 生物信息学分析目标基因在斑马鱼早期胚胎发送过程中是否有表达。   1.2 收集斑马鱼早期发育胚胎(通常为48 hpf前的胚胎),提取总RNA,然后进行体外转录(RT)。   1.3 设计检测目标基因表达的PCR引物,以1.2获得的cDNA为模板,

Cell新突破:CRISPR技术助力转录调控研究

  CRISPRs 技术成为了最近的新宠儿,这种基因组编辑技术更易于操作,也具有更强的扩展性,近期来自加州大学旧金山分校,伯克利分校等处的研究人员发表了题为 “CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in

CRISPR技术如何助力癌症研究

  在美国癌症研究学会(AACR)的新一届年会上,不少研究人员介绍了他们如何利用当下热门的CRISPR技术来研究癌症并寻找治疗方法。  据Whitehead研究所的首席研究员David Sabatini介绍,他们实验室利用CRISPR筛选癌细胞系,以搜索目标基因,并确定致癌通路的组分。  研究人员利

改良版基因编辑,竟然是控制肥胖和糖尿病的“神器”?

  根据世界卫生组织(WHO)的数据,2016年全球超过19亿成年人超重,其中超过6.5亿人患有肥胖症。超重或肥胖会增加患糖尿病、心脏病、某些类型的癌症和肌肉骨骼问题,尤其是骨关节炎。图片来源:Pixabay  体重管理对于超重或肥胖的人来说,可以用来帮助他们达到健康体重。处方减肥药物也可以作为一个

Science采用改进CRISPR技术-发现近500个新的lncRNAs

  长链非编码RNA (lncRNAs)是一类长度大约为200个核苷酸,但不编码任何蛋白的神秘分子,一直以来科学家们都想知道基因组中这类分子到底是起什么作用的。  12月15日Science杂志公布了一项最新研究发现:来自加州大学旧金山分校的研究人员识别出了499个新lncRNAs,这为理解这些小分

与CRISPR旗鼓相当的新一代RNAi

  基因筛选是经典的生物学研究方法,可以鉴定在某一生物学过程中起作用的基因。哺乳动物细胞的基因筛选一般是在RNA干扰(RNAi)的基础上进行的。  1998年Andrew Fire 和Craig Mello两位科学家首次在线虫中证明了RNAi的存在,他们也因此获得了诺贝尔生理/医学奖。2001年马普

返老还童将成真,斯坦福教授解说“生命编程”技术

如果有一天,艾滋病、乙肝等从地球上消失。如果有一天我们可以根治癌症。如果秃头、肥胖、近视都能够被治疗。如果有一天,我们可以返老还童。世界会不会更加美好?探长获悉基因编辑和干扰技术有望将这些梦想都变成现实,于是潜入腾讯WE大会,聆听了斯坦福大学Lei Stanley Qi(亓磊)教授关于“编程生命”的

刘小乐、张锋CRISPR最新论文

  最近,来自哈佛大学医学院Dana-Farber癌症研究院、哈佛大学统计系和麻省理工学院-哈佛大学布罗德研究所的研究人员,在国际基因组研究权威期刊《Genome Research》发表题为“Sequence determinants of improved CRISPR sgRNA design”

CRISPR新成果:-针对长链非编码RNA的完全敲除高通量筛选

  之前的方法在效率、质量(假阳性、假阴性)上各有欠缺:比如CRISPRi的方法只能实现基因表达抑制而不是完全敲除,CRISPRa的方法只能上调基因表达,无法对基因不可或缺的作用实施筛选评估。大片段删除的策略由于步骤的繁琐,也限制了其在更大规模上得到应用。  作为强大的基因编辑工具,CRISPR/C

刘小乐教授连发多项研究成果

  华人女学者、哈佛大学公共卫生学院Dana-Farber癌症研究所的刘小乐(X Shirley Liu)教授,也是教育部“长江学者”讲座教授、中组部“千人计划”入选者,是国际生物信息学界的领军人物。其带领的课题组长期致力于生物大数据的收集和信息挖掘、筛选治疗癌症药物的有效靶点,以及开发个性化癌症诊

CRISPR功能研究入门指南

  基因组测序让我们意识到,人类基因组只有一小部分被翻译成蛋白质。其实我们基因组的80%会转录成RNA,但这些转录本大多不生成蛋白质。近年来人们发现非编码RNA往往与人类疾病有关,不过绝大多数非编码RNA的功能还是未知的。CRISPR/Cas9在这方面可以起到重要的作用。  CRISPR激活(CRI

华人学者Cell子刊发表CRISPR重要成果

  人类消化道中居住着大量的微生物,它们被统称为肠道微生物组。肠道微生物组在人类代谢食物、抵御感染和应答药物等过程中起到了重要的作用。许多人类疾病都与微生物组失衡有关。   科学家们正在尝试对肠道微生物进行基因工程改造,以实现各种各样的应用,比如调节肠道生态环境和治疗人类疾病。多形拟杆菌(Bac

Cell-Stem-Cell八大热点文章(6月)

  《Cell Stem Cell》杂志是2007年Cell出版社新增两名新成员之一(另外一个杂志是Cell Host & Microbe),这一杂志内容涵盖了从最基本的细胞和发育机制到医疗软件临床应用等整个干细胞生物学研究内容。这一杂志特别关注胚胎干细胞、组织特异性和癌症干细胞的最新成果。《Cel

利用CRISPR研究基因组“暗物质”

  超过98%的人类基因组由非编码基因组成。这些非编码基因被称为基因组的“暗物质”,它们能调控编码基因的表达,从而影响人类健康和疾病进程。自从人类基因组序列被公开发表以来,科学家们努力解析基因中的功能元件,包括非编码调节区——参与转录调节的顺式调节区和非编码RNA(ncRNA)。转录因子在整个基因组

Cell:新研究有助于确定使我们成为人类的基因变化

大约700万年前,人类从我们最接近的动物亲戚黑猩猩那里分离出来,在进化树上形成了我们自己的分支。在此后的时间里---从进化的角度看是短暂的---我们的祖先进化出了使我们成为人类的性状,包括比黑猩猩大得多的大脑和更适合用双脚行走的身体。这些身体上的差异是由我们的DNA水平上的微妙变化所支撑的。然而,在

基因编辑进展梳理-Part-II-基于CRISPRCas9的技术应用篇(四)

 6. 基于CRISPRi的高通量技术快速绘制人类基因的功能图谱2018年7月,Cell刊登了美国加州大学旧金山分校的研究小组的研究成果,开发了一种基于CRISPR的高通量技术快速地绘制人细胞中将近500个基因的功能图谱,其中的许多基因之前从未被详细地研究过。人类目前研究过的基因还不到10%,剩余的

CRISPR大规模基因组研究

  来自杜克大学的研究人员设计出了一种能快速,方便有效靶向人类基因组任何基因的新方法,这种新工具建立在一种来自细菌的RNA引导酶的基础上,即CRISPR-Cas RNA引导性核酸酶(RNA-guided nucleases,RGNs)。   这一研究成果公布在7月25日Nature Met

抗铜绿假单胞菌IE型CRISPRCas的噬菌体蛋白质结构

  本研究首次对铜绿假单胞菌抗I-E型CRISPR/Cas系统蛋白AcrE1进行了结构解析,分析了AcrE1作用的机理,并且利用AcrE1蛋白将铜绿假单胞菌內源的I-E型CRISPR系统变成了基因组调控工具。   image.png   CRISPR/Cas广泛存在于细菌和古细菌中,是细胞保护自

超越韩春雨?新一代基因编辑技术在南京大学问世

   内切酶经过改造可以成为强大的DNA编辑工具,比如ZFN、TALEN、风头正劲的CRISPR–Cas系统和引起争议的NgAgo技术。不过这些技术都是通过序列识别来实现靶向切割的,会受到序列偏好的限制。  南京大学的研究团队九月十五日在Genome Biology杂志上发表了一项突破性成果。他们开

科学家开发新CRISPR系统——可调、可逆的一步式基因表达控制

  生物通报道:控制基因表达水平的能力,是生物学中的一个主要任务。一种广泛使用的方法是删除一个感兴趣的非必须基因(Knockout),或者多步重组让一个感兴趣的基因表达减少(Knockdown)。然而,这些遗传学方法是费时费力的,并且对于定量研究来说是有限的。12月20日,在Nature子刊《Sci

何厚胜/卫功宏/任善成合作发现调控前列腺癌的新机制

  Nature子刊 |   既往众多的大规全基因组关联研究(GWAS)在人类基因组上发现了 269 个与前列腺癌发病风险密切相关的风险区域,其中包含了大量单核苷酸多态性 (SNP) 位点,但是其中约 98% 的 SNP 位点位于基因组上的非编码区。  这些非编码区的位点与前列腺癌之间究竟仅仅是统计

基因编辑工具的开发

基因编辑已经被越来越广泛的用于生物学的研究和应用当中,例如合成生物学,基因治疗,药物靶点发现,mRNA剪接,蛋白定向进化等等。我们在使用各种各样的基因编辑工具时,不禁感叹这些工具是多么的精巧绝伦。但科研人员发现基因编辑工具,改进这些工具的功能、效率并非易事。高效、精准、便捷的基因编辑工具,一直是人们