岛津EDX新产品电子制冷EDXLE隆重登场面向全国诚招代理商

岛津公司隆重推出新产品--能量色散型X射线荧光分析仪EDX-LE。 此款仪器是专用于RoHS/ELV/法规限制的有害元素筛选分析的X射线荧光分析装置。 配备无需液氮型电子制冷(Si-PIN检测器)检测器,因此在实现降低运作成本和更易维护的同时,以维持高可信性分析和进一步提高操作性达到自动化分析为目标。 根据不同样品从开始测试到得到结果所需测试时间基本上可在1分钟内完成,所以完全可以应对RoHS法规中所限制的有害元素的筛选分析。另外,最近几年在众多企业中实施的自行检测有害元素Cl的检测分析,该款装置也可以通过筛选分析简单的检测出来。同时推荐该装置作为中国版RoHS第二阶段应对手段。 现面向全国诚招代理商,等待您的加盟! 联系电话:010-85252365 电子邮件: bszm@shimadzu.com.cn 联系人:张小姐 ......阅读全文

X射线荧光分析仪的优点

  对于已压铸好的机械零件可以做到无损检测,而不毁坏样品。  测试速率高,可以在较少时间内进行大量样品测试,分析结果可以通过计算机直接连网输出。  分析速度较快。  对于纯金属可采用无标样分析,精度能达分析要求。  不需要专业实验室与操作人员,不引入其它对环境有害的物质。

X射线荧光分析仪的优点

  对于已压铸好的机械零件可以做到无损检测,而不毁坏样品。  测试速率高,可以在较少时间内进行大量样品测试,分析结果可以通过计算机直接连网输出。  分析速度较快。  对于纯金属可采用无标样分析,精度能达分析要求。  不需要专业实验室与操作人员,不引入其它对环境有害的物质。

X射线荧光分析仪的缺点

  关于非金属和界于金属和非金属之间的元素很难做到精确检测。在用基本参数法测试时,如果测试样品里含有C、H、O等元素,会出现误差。  不能作为仲裁分析方法,检测结果不能作为国家认证根据,不能区分元素价态。  对于钢铁等含有非金属元素的合金,需要代表性样品进行标准曲线绘制,分析结果的精确性是建立在标样

X射线荧光分析仪的缺点

  关于非金属和界于金属和非金属之间的元素很难做到精确检测。在用基本参数法测试时,如果测试样品里含有C、H、O等元素,会出现误差。  不能作为仲裁分析方法,检测结果不能作为国家认证根据,不能区分元素价态。  对于钢铁等含有非金属元素的合金,需要代表性样品进行标准曲线绘制,分析结果的精确性是建立在标样

X射线荧光分析仪的介绍

  X射线荧光分析仪主要由激发、色散(波长和能量色散)、探测、记录和测量以及数据处理等部分组成。X射线光谱仪与X射线能谱仪两类分析仪器有其相似之处,但在色散和探测方法上却完全不同。在激发源和测量装置的要求上,两类仪器也有显著的区别。X射线荧光分析仪按其性能和应用范围,可分为实验室用的X射线荧光光谱仪

X射线荧光(XRF):理解特征X射线

  什么是XRF?   X射线荧光定义:由高能X射线或伽马射线轰击激发材料所发出次级(或荧光)X射线。这种现象广泛应用于元素分析。  XRF如何工作?   当高能光子(X射线或伽马射线)被原子吸收,内层电子被激发出来,变成“光电子”,形成空穴,原子处于激发态。外层电子向内层跃迁,发射出能量等于两级能

选择X射线荧光分析仪的误区

  强调“荧光”,许多用户误认为只有用X光管作为激发源的管激发仪器才是X荧光仪,一味地强调所谓“荧光”。事实上,如前所述,无论是采用X光管还是采用放射性同位素源作为激发源,只要是由X射线激发、通过测定被测样品发出的荧光X射线得出其化学成分及含量的仪器,都是X荧光分析仪。  源激发和管激发各有优缺点。

选购X射线荧光分析仪的误区

  听别人多,看自己少。用户在设备选型时经常会开展一些调研考察,一方面了解一些各种仪器及厂家的基本情况,作一些相互比较;另一方面会去一些与自己情况类似的用户那里考察。这当然是必要的。但最重要的还是要根据自己的实际情况和具体需求来选择。比如:以全厂质量控制为主要目的,样品种类多,需要做全分析,准确度要

X射线荧光分析仪的主要分类

根据分光方式的不同,X射线荧光分析可分为能量色散和波长色散两类,也X射线荧光分析就是通常所说的能谱仪和波谱仪,缩写为EDXRF和WDXRF。通过测定荧光X射线的能量实现对被测样品的分析的方式称之为能量色散X射线荧光分析,相应的仪器称之为能谱仪,通过测定荧光X射线的波长实现对被测样品分析的方式称之为波

X射线荧光分析仪的发展历程

  1895年伦琴发现X射线;  1910年特征X射线光谱的发现,为X射线光谱学的建立奠定了基础;  20世纪50年代商用X射线发射与荧光光谱仪的问世,使得X射线光谱学技术进入了实用阶段;  60年代能量色散型X射线光谱仪的出现,促进了X射线光谱学仪器的迅速发展,并使现场和原位X射线光谱分析成为可能

X射线荧光光谱仪在ROHS检测中的优劣势

 许多ROHS仪器用户大概都不太清楚这款仪器是基于怎样的应用原理来完成作业的,这就是今天我们要在这里为大家介绍的XRF-X射线荧光光谱仪的优缺点。X射线荧光光谱仪(XRF)由激发源(X射线管)和探测系统构成。  X射线管产生入射X射线(一次X射线),激发被测样品。受激发的样品中的每一种元素会放射出二

X荧光光谱法测ROHS

使用荧光光谱分析法(XRF)进行RoHS验证-X荧光光谱测ROHS随着欧盟RoHSzui后期限的临近,很多公司都开始采用无铅化工艺,但要确保工艺的一致性,有效的检测方法是必不可缺的,荧光光谱分析法(XRF)就是其中之一。许多晶圆制造厂已开始用XRF法在薄镀层上进行无危害性成分测量,而且还用它探测扩散

选购X射线荧光分析仪的注意点

  重价格轻服务。价格当然是选购商品的重要因素,但不应当是决定性因素。分析仪器各部件质量及其价格悬殊极大,并且直接决定了仪器的售价,单纯追求价格便宜,很难保证质量。对于X荧光分析仪这样的设备来说,服务往往更为重要。这里所说的服务不仅指安装调试、备品备件供应、维修服务等,更重要的是应用技术服务。对于大

简述X射线荧光分析仪的产品特点

  1、在测定微量成分时,由于X射线管的连续X射线所产生的散射线会产生较大的背景,致使目标峰的观测比较困难。为了降低或消除背景和特征谱线等的散射X射线对高灵敏度分析的影响,此荧光分析仪配置了4种可自动切换的滤光片,有效地降低了背景和散射X射线的干扰,调整出最具感度的辐射,进一步提高了S/N的比值,从

质子激发X射线荧光分析的X-射线谱

  在质子X 射线荧光分析中所测得的X 射线谱是由连续本底谱和特征X 射线谱合成的叠加谱。样品中一般含有多种元素,各元素都发射一组特征X 射线谱,能量相同或相近的谱峰叠加在一起,直观辨认谱峰相当困难,需要通过复杂的数学处理来分解X 射线谱。解谱包括本底的扣除、谱的平滑处理、找峰和定峰位、求峰的半高宽

X射线荧光分析仪的基本信息介绍

  X 射线荧光光谱仪的不断完善和发展所带动的X 射线荧光分析技术已被广泛用于冶金、地质、矿物、石油、化工、生物、医疗、刑侦、考古等诸多部门和领域。X 射线荧光光谱分析不仅成为对其物质的化学元素、物相、化学立体结构、物证材料进行试测,对产品和材料质量进行无损检测,对人体进行医检和微电路的光刻检验等的

TXRF8全反射X射线荧光分析仪

  全反射X荧光(TXRF)分析技术是近年来才发展起来的多元素同时分析技术。TXRF利用全反射技术,使样品荧光的杂散本底比X荧光能量色散谱仪(EDXRF)本底降低约四个量级,从而大大提高了能量分辨率和灵敏度,避免了XRF测量中通常遇到的本底增强或减弱效应;同时TXRF技术又继承了EDXRF方法的优越

TXRF8全反射X射线荧光分析仪

  产品介绍   全反射X荧光(TXRF)分析技术是近年来才发展起来的多元素同时分析技术。TXRF利用全反射技术,使样品荧光的杂散本底比X荧光能量色散谱仪(EDXRF)本底降低约四个量级,从而大大提高了能量分辨率和灵敏度,避免了XRF测量中通常遇到的本底增强或减弱效应;同时TXRF技术又继承了ED

全反射X射线荧光分析仪原理及特点

   全反射X荧光光谱仪原理是基于X荧光能谱法,但与X射线能谱形成对比的是“传统能谱采用原级X光束以45°角轰击样品,而TXRF采用毫弧度的临界角。由于采用此种近于切线方向的入射角,原级X光束几乎可以全部被反射,照射在样品表面后,可以zui大程度上避免样品载体吸收光束和减小散射的发生,同时减小了载体

全球与中国X射线荧光分析仪市场现状

亚太地区是最大的市场,约占37%的市场份额。其次是北美和欧洲,约占55%的市场份额。主要的生产厂商有AMETEK, Thermo Fisher, Shimadzu, Rigaku, Oxford-Instruments, HORIBA, Hitachi High-tech, Olympus Inno

x射线衍射、x荧光、直读光谱区别

1、X射线衍射仪是利用衍射原理,精确测定物质的晶体结构,织构及应力,精确的进行物相分析,定性分析,定量分析.广泛应用于冶金,石油,化工,科研,航空航天,教学,材料生产等领域.  X射线衍射仪是利用X射线衍射原理研究物质内部微观结构的一种大型分析仪器,广泛应用于各大、专院校,科研院所及厂矿企业.  基

X射线荧光光谱仪和X射线荧光能谱仪特点对比

X射线荧光光谱仪和X射线荧光能谱仪各有优缺点。前者分辨率高,对轻、重元素测定的适应性广。对高低含量的元素测定灵敏度均能满足要求。后者的X射线探测的几何效率可提高2~3数量级,灵敏度高。可以对能量范围很宽的X射线同时进行能量分辨(定性分析)和定量测定。对于能量小于2万电子伏特左右的能谱的分辨率差。

基于RoHS认证的X荧光分析技术实验研究

RoHS指令(《电气、电子设备中限制使用某些有害物质指令》)规定输往欧洲的电子产品及其组件均需对六种有毒成份:铅(Pb)、汞(Hg)、镉(Cd)、六价铬(Cr6+)、多溴联苯(PBBs)、多溴二苯醚(PBDEs)等有害物质加以限制。近几年该指令已在电子电器、质量检测、环保等相关行业广泛实施应用。在多

X射线荧光光谱仪X射线的衍射介绍

  相干散射与干涉现象相互作用的结果可产生X射线的衍射。X射线衍射与晶格排列密切相关,可用于研究物质的结构。  其中一种用已知波长λ的X射线来照射晶体样品,测量衍射线的角度与强度,从而推断样品的结构,这就是X射线衍射结构分析(XRD)。  另一种是让样品中发射出来的特征X射线照射晶面间距d已知的晶体

X射线荧光光谱仪X射线光管结构

  常规X射线光管主要采用端窗和侧窗两种设计。普通X射线光管一般由真空玻璃管、阴极灯丝、阳极靶、铍窗以及聚焦栅极组成,并利用高压电缆与高压发生器相接,同时高功率光管还需要配有冷却系统。侧窗和端窗X射线光管结构如图6和图7所示。  当电流流经X射线光管灯丝线圈时,引起阴极灯丝发热发光,并向四周发射电子

X射线荧光光谱仪X射线散射的介绍

  除光电吸收外,入射光子还可与原子碰撞,在各个方向上发生散射。散射作用分为两种,即相干散射和非相干散射。  相干散射:当X射线照射到样品上时,X射线便与样品中的原子相互作用,带电的电子和原子核就跟随着X射线电磁波的周期变化的电磁场而振动。因原子核的质量比电子大得多,原子核的振动可忽略不计,主要是原

X射线荧光光谱仪X射线吸收的介绍

  当X射线穿过物质时,一方面受散射作用偏离原来的传播方向,另一方面还会经受光电吸收。光电吸收效应会产生X射线荧光和俄歇吸收,散射则包含了弹性和非弹性散射作用过程。  当一单色X射线穿过均匀物体时,其初始强度将由I0衰减至出射强度Ix,X射线的衰减符合指数衰减定律:  式中,μ为质量衰减系数;ρ为样

概述X射线荧光光谱仪X射线的产生

  根据经典电磁理论,运动的带电粒子的运动速度发生改变时会向外辐射电磁波。实验室中常用的X射线源便是利用这一原理产生的:利用被高压加速的电子轰击金属靶,电子被金属靶所减速,便向外辐射X射线。这些X射线中既包含了连续谱线,也包括了特征谱线。  1、连续谱线  连续光谱是由高能的带电粒子撞击金属靶面时受

牛津仪器推出新款X射线荧光分析仪XMET7500

  牛津仪器公司自豪地推出手持X射线荧光分析仪X-MET7000系列的新成员X-MET7500。这款X-MET7500能够快速精确地分析不同材料,包括痕量元素和轻元素(从镁开始)分析,不需要氦清除或真空泵。   这是一款理想的筛选工具:   金属工业:材料可靠性鉴定 金属回收;废旧金属分拣 金和

X射线荧光分析技术简介

  X光荧光分析又称X射线荧光分析(XRF)技术,即是利用初级x射线光子或其他微观粒子激发待测样品中的原子,使之产生荧光(次级x射线)而进行物质成分分析和化学形态研究的方法。