X射线荧光光谱仪在ROHS检测中的优劣势

许多ROHS仪器用户大概都不太清楚这款仪器是基于怎样的应用原理来完成作业的,这就是今天我们要在这里为大家介绍的XRF-X射线荧光光谱仪的优缺点。X射线荧光光谱仪(XRF)由激发源(X射线管)和探测系统构成。 X射线管产生入射X射线(一次X射线),激发被测样品。受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这些放射出来的二次X射线的能量及数量。 然后,仪器软件将探测系统所收集到的信息转换成样品中各种元素的种类及含量,在有关X射线荧光光谱仪技术原理我们有更多的关于X射线荧光光谱仪是如何完成ROHS管控元素的分析工作的相关介绍。 下面让我们来了解一下XRF-X射线荧光光谱仪的优缺点都有哪些? XRF-X射线荧光光谱仪的优点主要有六个组成部分,他们分别是: 1.分析速度高 测定用时与测定精密度有关,但一般都很短,60~200分钟就可以测完样品中的P......阅读全文

X射线荧光光谱仪在ROHS检测中的优劣势

 许多ROHS仪器用户大概都不太清楚这款仪器是基于怎样的应用原理来完成作业的,这就是今天我们要在这里为大家介绍的XRF-X射线荧光光谱仪的优缺点。X射线荧光光谱仪(XRF)由激发源(X射线管)和探测系统构成。  X射线管产生入射X射线(一次X射线),激发被测样品。受激发的样品中的每一种元素会放射出二

X荧光光谱仪的优势及在RoHS检测上的应用

 X荧光光谱仪的优势   1、 分析速度快。测定用时与测定精密度有关,但一般都很短,2~5分钟就可以测完样品中的全部待测元素。   2、X射线荧光光谱跟样品的化学结合状态无关,而且跟固体、粉末、液体及晶质、非晶质等物质的状态也基本上没有关系。(气体密封在容器内也可分析)但是在高分辨率的精密测定中却可

X射线荧光光谱仪中的X射线原理科普

  X射线荧光光谱仪是一种快速的、非破坏式的物质测量方法。x射线具有很高的穿透本领,能透过许多对可见光不透明的物质,如墨纸、木料等。这种肉眼看不见的射线可以使很多固体材料发生可见的荧光,使照相底片感光以及空气电离等效应。X射线初用于医学成像诊断和X射线结晶学。X射线也是游离辐射等这一类对人体有危害的

X荧光光谱仪(RoHS检测仪器)的保养

一、仪器工作的外部环境1、周围强磁场干扰设备合理的工作环境,要求在没有电机、振动、电磁、高压或有高频率电焊器等电磁干扰的地方安装,否则会干扰设备的谱形或造成设备不能正常工作。2、环境温度,湿度的影响应保持室温20~25℃为宜,气温过高或过低都会影响设备的正常运作,所以需要配有空调;空气中相对湿度应保

X射线荧光光谱仪中X射线的由来和性质分析

X射线荧光光谱仪(XRF)由激发源(X射线管)和探测系统构成。X射线管产生入射X射线(一次X射线),激发被测样品。受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这些放射出来的二次X射线的能量及数量。然后,仪器软件将探测系统所

X射线荧光光谱仪-检测标准

JJG810-1993《波长色散X射线荧光光谱仪》检定周期为1年。

X荧光光谱仪的优劣势分析

  X荧光光谱仪(XRF)由激发源(X射线管)和探测系统构成。X射线管产生入射X射线(一次X射线),激发被测样品。受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这些放射出来的二次X射线的能量及数量。然后,仪器软件将探测系统所

XRF光谱仪在ROHS检测中的作用

采用XRF设备应用于有害元素测试的劣势: 1.只能测试元素,不能测试离子状态的物质。 2.XRF设备的分析方法是采用标准样品对比分析方法,而对于不同材质的样品必须选择不同材质的工作曲线测试,有可能带入人为误差。 3.对于要求较高标准的测试普通XRF的检出限很难达到客户要求; 4.对样品测试要

XRF光谱仪在ROHS检测中的作用

  采用XRF设备应用于有害元素测试的劣势:   1.只能测试元素,不能测试离子状态的物质。   2.XRF设备的分析方法是采用标准样品对比分析方法,而对于不同材质的样品必须选择不同材质的工作曲线测试,有可能带入人为误差。   3.对于要求较高标准的测试普通XRF的检出限很难达到客户要求;

X射线荧光光谱仪X射线吸收的介绍

  当X射线穿过物质时,一方面受散射作用偏离原来的传播方向,另一方面还会经受光电吸收。光电吸收效应会产生X射线荧光和俄歇吸收,散射则包含了弹性和非弹性散射作用过程。  当一单色X射线穿过均匀物体时,其初始强度将由I0衰减至出射强度Ix,X射线的衰减符合指数衰减定律:  式中,μ为质量衰减系数;ρ为样

X射线荧光光谱仪X射线散射的介绍

  除光电吸收外,入射光子还可与原子碰撞,在各个方向上发生散射。散射作用分为两种,即相干散射和非相干散射。  相干散射:当X射线照射到样品上时,X射线便与样品中的原子相互作用,带电的电子和原子核就跟随着X射线电磁波的周期变化的电磁场而振动。因原子核的质量比电子大得多,原子核的振动可忽略不计,主要是原

概述X射线荧光光谱仪X射线的产生

  根据经典电磁理论,运动的带电粒子的运动速度发生改变时会向外辐射电磁波。实验室中常用的X射线源便是利用这一原理产生的:利用被高压加速的电子轰击金属靶,电子被金属靶所减速,便向外辐射X射线。这些X射线中既包含了连续谱线,也包括了特征谱线。  1、连续谱线  连续光谱是由高能的带电粒子撞击金属靶面时受

X射线荧光光谱仪X射线的衍射介绍

  相干散射与干涉现象相互作用的结果可产生X射线的衍射。X射线衍射与晶格排列密切相关,可用于研究物质的结构。  其中一种用已知波长λ的X射线来照射晶体样品,测量衍射线的角度与强度,从而推断样品的结构,这就是X射线衍射结构分析(XRD)。  另一种是让样品中发射出来的特征X射线照射晶面间距d已知的晶体

X射线荧光光谱仪检测分析原理

  X射线荧光光谱分析仪可以对各种样品的元素组成进行定量分析,包括压片、融珠、粉末液体、甚至是庞大的样品。它使用一种高功率X射线管达到了检测限低和测量时间短的效果。具有重现性好,测量速度快,灵敏度高的特点。  X射线荧光光谱分析仪物理原理  当材料暴露在短波长X光检查,或伽马射线,其组成原子可能发生

X-射线荧光光谱仪

用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析,为此使用的仪器叫X射线荧光光谱仪。由于X光具有一定波长,同时又有一定能量,因此,X射线荧光光谱仪有两种基本类型:波长色散型和能量色散型。图

X射线荧光光谱仪X射线光管结构

  常规X射线光管主要采用端窗和侧窗两种设计。普通X射线光管一般由真空玻璃管、阴极灯丝、阳极靶、铍窗以及聚焦栅极组成,并利用高压电缆与高压发生器相接,同时高功率光管还需要配有冷却系统。侧窗和端窗X射线光管结构如图6和图7所示。  当电流流经X射线光管灯丝线圈时,引起阴极灯丝发热发光,并向四周发射电子

X射线荧光光谱仪和X射线荧光能谱仪特点对比

X射线荧光光谱仪和X射线荧光能谱仪各有优缺点。前者分辨率高,对轻、重元素测定的适应性广。对高低含量的元素测定灵敏度均能满足要求。后者的X射线探测的几何效率可提高2~3数量级,灵敏度高。可以对能量范围很宽的X射线同时进行能量分辨(定性分析)和定量测定。对于能量小于2万电子伏特左右的能谱的分辨率差。

X射线荧光光谱仪在同类产品中的优异表现

 X射线荧光光谱仪是一个用于矿业矿物质分析的全套的分析工具,为从锑至锌的应用领域,提供的高灵敏度、多功能、稳定和快速的矿产勘查,矿山管理,选矿和质量控制。   X射线荧光光谱仪优异表现:   -  的SuperQ软件搭配“分析精灵"专家帮助系统,为您提供24/7的专家级帮助;   -  TH

X射线荧光光谱技术在重金属检测中的应用

X射线荧光光谱技术是利用样品对X射线的吸收随样品中的成分及其多少而变化来定性或定量测定样品中成分的一种方法。它具有分析迅速、样品前处理简单、可分析元素范围广、谱线简单、光谱干扰少、试样形态多样性以及测定时的非破坏性等特点。文章概述了X射线荧光光谱仪的基本原理、分类及系统的组成,综述了X射线荧光光谱技

X射线荧光光谱技术在重金属检测中的应用

 X射线荧光光谱技术,是一种利用样品对X射线的吸收随样品中的成分及其多少变化,来定性或定量测定样品中成分的方法。它集现代电子技术、光谱分析技术、计算机技术和化学计量学技术于一体,具有分析速度快、可测浓度宽、重现性好、非破坏性测定、测量元素范围广、成本低等特点。适合于多种类型的固态和液态物质的测定,并

X射线荧光光谱仪检测矿石的介绍

  矿石检测是选矿企业选矿和生产的利器,没有快速准确的数据支持,难以达到高效的生产。随着科学技术的进步,现代分析仪器功能十分强大,在效率、环保、职业健康方面优势巨大,因此用途也相当广泛,已逐步取代传统化学分析。X-射线荧光光谱仪(XRF)就是其中的一种定量分析仪器。

X射线荧光光谱仪X射线防护系统的故障分析

  为了防止X射线泄漏,高压发生器只有在射线防护系统正常的情况下才能启动。射线防护系统正常与否,主要检查以下二部分:  1、面板的位置是否正常。X射线荧光光谱仪是一个封闭系统,面板是最外层的射线防护装置,如果有一块面板不到位,仪器就有射线泄漏的可能。因此,每块面板上都有位置接触传感器,面板没有完全合

X射线衍射仪与X射线荧光光谱仪的区别

X射线衍射仪(XRD)是矿物学研究领域内的主要仪器,用于对结晶物质的定性和定量分析。X射线荧光光谱仪(XRF)是通过测定二次荧光的能量来分辨元素的,可做定量或定性分析。两种仪器构造与使用对象不同,XRD要复杂,XRF通常比较小。

X射线衍射仪与X射线荧光光谱仪的区别

X射线衍射仪(XRD)是矿物学研究领域内的主要仪器,用于对结晶物质的定性和定量分析。X射线荧光光谱仪(XRF)是通过测定二次荧光的能量来分辨元素的,可做定量或定性分析。两种仪器构造与使用对象不同,XRD要复杂,XRF通常比较小。

X射线衍射仪与X射线荧光光谱仪的区别

X射线衍射仪(XRD)是矿物学研究领域内的主要仪器,用于对结晶物质的定性和定量分析。X射线荧光光谱仪(XRF)是通过测定二次荧光的能量来分辨元素的,可做定量或定性分析。两种仪器构造与使用对象不同,XRD要复杂,XRF通常比较小。

X射线衍射仪与X射线荧光光谱仪的区别

x射线荧光和x射线衍射的区别在于前者是对材料进行成份分析的仪器,而后者则主要是对材料进行微观结构分析以便确定其物理性状的设备。

X射线衍射仪与X射线荧光光谱仪的区别

x射线荧光和x射线衍射的区别在于前者是对材料进行成份分析的仪器,而后者则主要是对材料进行微观结构分析以便确定其物理性状的设备。

X射线衍射仪与X射线荧光光谱仪的区别

X射线衍射仪(XRD)是矿物学研究领域内的主要仪器,用于对结晶物质的定性和定量分析。X射线荧光光谱仪(XRF)是通过测定二次荧光的能量来分辨元素的,可做定量或定性分析。两种仪器构造与使用对象不同,XRD要复杂,XRF通常比较小。

X射线衍射仪与X射线荧光光谱仪的区别

X射线衍射仪(XRD)是矿物学研究领域内的主要仪器,用于对结晶物质的定性和定量分析。X射线荧光光谱仪(XRF)是通过测定二次荧光的能量来分辨元素的,可做定量或定性分析。两种仪器构造与使用对象不同,XRD要复杂,XRF通常比较小。

X射线衍射仪与X射线荧光光谱仪的区别

X射线衍射仪(XRD)是矿物学研究领域内的主要仪器,用于对结晶物质的定性和定量分析。X射线荧光光谱仪(XRF)是通过测定二次荧光的能量来分辨元素的,可做定量或定性分析。两种仪器构造与使用对象不同,XRD要复杂,XRF通常比较小。