Antpedia LOGO WIKI资讯

癌细胞复制过程的关键因子

所有的癌症都有“无限复制的潜力”。最近,科学家鉴定了某些侵袭性癌细胞复制过程中的一个新“参与因子”。 这些发现有望使我们确定新的癌症靶点,并最终带来新的癌症疗法。相关研究结果发表在《Cell Reports》。 端粒是一段重复的DNA序列,覆盖在每个人的染色体末端,作为一道屏障保护着基因组。每一次细胞分裂时,这道屏障的一部分就会丢失,随着时间的推移,我们的遗传信息就容易受到损害。为了避免这种损伤,极短的端粒会向细胞发出信号,诱导细胞生长停滞或死亡。 癌细胞有某种机制来克服渐进性的端粒缩短,并绕过这一生长停滞。癌细胞可以通过产生端粒酶或使用端粒替代延长途径(ALT)维持其端粒长度。早期的研究显示,ALT途径可能被端粒上的复制压力激活。 在这项研究中,来自美国波士顿大学医学院(BUSM)的研究人员确定,复制应激反应蛋白SMARCAL1,是ALT途径的一个关键因子。本文通讯作者、BUSM药理学和医学助理教授Rachel Fl......阅读全文

深度解读:端粒长度与疾病发生的关联

  端粒是真核生物染色DNA末端的特殊结构,早在20世纪80年代中期,科学家们就发现了端粒酶,当细胞DNA复制终止时,在端粒酶的帮助下DNA就能够通过端粒依赖模版的复制,补偿由去除引物引起的末端缩短,因此在端粒的保持过程中,端粒酶至关重要;但随着细胞分裂次数的增加,端粒的长度逐渐缩短,当端粒变得不能

诺贝尔奖得主Cell发布端粒酶重要发现

  随着染色体绳索的复制,它的两端会遭到磨损。然而由于染色体的末端有着额外的细绳,磨损不会触及重要信息所在的绳索主体部分。这一额外的细绳被称作为“端粒”。随着时间的推移及经历多轮复制,这一端粒细绳会分解直至染色体丧失它的保护末端,这种“磨损”触及绳索,破坏染色体导致了细胞死亡。  这样当然好——最终

端粒长度影响癌细胞的分化

  日本癌症研究基金会的研究人员发现,促使端粒延长可促进癌细胞的体外分化,这可能降低了癌症的恶性程度。该研究成果于近期发表在《Molecular and Cellular Biology》杂志上。   端粒是存在于真核细胞染色体末端的一小段DNA-蛋白复合体,它与端粒结合蛋白一起构成了特殊的“

盘点:那些“永生”的生物

   永生,更像是诅咒而不是祝颂——蒂索诺斯这才幡然醒悟。这个神话里的特洛伊王子如此俊俏,以致得到曙光女神厄俄斯的眷顾,她恳请宙斯赐予他永生,好让她和他长相厮守。不过宙斯执文害意,蒂索诺斯死不了,但他会衰老。蒂索诺斯渐渐失去了自己姣好的容颜和青春的身体,厄俄斯很快就没了热乎劲。她最终把他独锁深闺,让

研究称生活压力致DNA质量下降 早亡风险增大

   近日据外媒报道,美国一项最新研究发现,艰苦的成长环境会对穷人产生影响。生活压力会在他们的基因中留下长久、有害的印记,以致穷人的DNA质量下降,早死的可能性也就越大。  美国斯坦福大学进行的一项研究调查恶劣人类生活对其DNA的影响,发现如果生活因贫穷而面临较大压力的话,人体主宰寿命长短的染色体端

2009年诺贝尔生理学或医学奖揭晓

  三位美国科学家因在端粒和端粒酶如何保护染色体方面的发现获奖   Elizabeth H. Blackburn   Carol W. Greider   Jack W. Szostak   北京时间10月5日下午5点30分,2009年诺贝尔生理学或医学奖揭晓,三位美国科学家因在

端粒酶研究领域的重要成果!

  本文中,小编整理了多篇研究报告,共同聚焦科学家们在端粒酶研究领域取得的重要成果,分享给大家!图片来源:Vimeo  【1】PNAS:促进癌症的端粒酶也能保护健康细胞  doi:10.1073/pnas.1907199116  马里兰大学和美国国立卫生研究院的新研究揭示了端粒酶的新作用。端粒酶在正

【盘点】咖啡真的有益于机体健康嘛?

  在睡眼惺忪的清晨或是紧张忙碌的工作中,你是否会享受一杯香浓醇厚的咖啡呢?现今社会,咖啡基本已经成为很多人生活中的必需品。  近些年来,科学家们进行了很多研究来揭示咖啡和人类机体疾病的关联,下面小编就来为您一一盘点咖啡与机体疾病之间的种种关系。  【1】Pharm Res:咖啡有益,可防止肥胖相关

病理名词解释大全(五)

81. 肿瘤的分期(staging):主要原则是根据原发肿瘤的大小、浸润的深度、范围以及是否累及邻近器官,有无局部和远处淋巴结的转移,有无血源性或其他远处转移等来确定肿瘤发展的程期或早晚。国际上广泛采用TNM分期系统。82. 异位内分泌肿瘤:一地非内分泌肿瘤能产生和分泌激素或激素

PLOS Genetics:咖啡或啤酒可能会影响端粒长度

  Kupiec教授说:这是第一次,我们已经确定了改变端粒长度的几个环境因素,我们已经证明这些环境是如何做到这一点,这可能有一天有助于人类疾病的预防和治疗。相关研究论文发表在PLOS Genetics杂志上。   端粒是染色体中DNA链的末端,他们是必不可少的,以确保DNA链被修复并正确复制。

自噬原来是阻止癌症的保护机制...

  就像鞋带末端有塑料帽以防止系鞋带时的磨损一样,染色体的末端也有一种名为端粒的分子帽来保护染色体,当细胞持续分裂和复制DNA时防止它们相互融合。但是,当塑料帽丢失后鞋带会变得凌乱,而当端粒丢失则可能会导致癌症。左图:正在进行自噬的细胞中的23对染色体看上去正常且健康,没有出现结构或数量上的变化。右

光镊子技术在癌症治疗中应用

  干细胞依赖端粒酶才得以在我们体内持续不断地工作。当端粒酶发生故障时,就会导致癌症和早衰。大约90%的癌细胞的端粒酶活性异常。  密歇根州立大学的跨学科研究团队以前所未有的精确性在单分子水平上观察到了端粒酶的活性,使得有关端粒酶的认识朝向更好的癌症治疗又进一步。  这一突破得益于一种新颖的调查程序

一种在癌症开始前就阻止癌症发生的细胞过程

  正如鞋带的塑料尖端,防止我们系鞋带时磨损鞋带一样,端粒的分子尖端保护染色体末端,当细胞不断分裂和复制DNA时,防止它们融合。失去塑料头可能会导致凌乱,端粒的丢失可能会导致癌症。  索尔克生物研究所研究端粒与癌症关系的科学家们做出了一个惊人的发现:一种称为自噬的细胞循环过程(通常被认为是一种生存机

一种在癌症开始前就阻止癌症发生的细胞过程

  正如鞋带的塑料尖端,防止我们系鞋带时磨损鞋带一样,端粒的分子尖端保护染色体末端,当细胞不断分裂和复制DNA时,防止它们融合。失去塑料头可能会导致凌乱,端粒的丢失可能会导致癌症。  索尔克生物研究所研究端粒与癌症关系的科学家们做出了一个惊人的发现:一种称为自噬的细胞循环过程(通常被认为是一种生存机

Nature杂志12月不得不看的亮点研究

  不知不觉,再过天2016年就离我们远去了,迎接我们的将是崭新的2017年,那么即将过去的12月里Nature杂志又有哪些亮点研究值得学习呢?小编对此进行了整理,与各位一起学习。  【1】Nature:首次揭示RNA剪接与衰老存在因果关联  doi:10.1038/nature20789  衰老是

合成端粒酶主要蛋白结构被揭开

  加利福尼亚大学洛杉矶分校的生化学家近日绘制出合成端粒酶(核糖体蛋白酶)的主要蛋白质及RNA(核糖核酸)的结构,从而揭示了这种对于医治癌症与衰老具有十分重要意义的酶的合成机理。研究成果刊登在7月13日出版的《分子细胞》杂志上。   长期以来,由于端粒酶与癌症及衰老有很大关系,所以一直吸引着科学家

多篇文章聚焦自噬研究领域新亮点!

  本文中,小编整理了多篇研究成果,共同解读科学家们在自噬研究领域取得的新成果!与大家一起学习!  【1】TEM:靶向作用细胞“自噬”有望抑制肥胖和2型糖尿病等多种代谢性疾病的发生  doi:10.1016/j.tem.2019.07.009  我们是否能通过改变细胞清理垃圾的方式来治疗肥胖或2型糖

科学家发现癌细胞跨越细胞衰老死亡的机制

  癌细胞很可怕。在普通细胞正常走着“生老病死”之路时,癌细胞却不知从哪得来修仙秘籍,走上成“仙”之路,不老不死、还能无限增殖。  但是这本神奇秘籍,也像是金庸书里写的那样难得,除了极少数细胞得窥天机成功羽化,绝大多数细胞都逃脱不了死亡的命运。自然,我们人类也还暂时无从得知,这本书里到底有什么成仙大

Cell子刊解析癌症形成关键信号

  来自Salk生物研究学院的一个科学家小组,确定了一个重要的细胞周期调控信号遭到破坏,导致癌细胞增殖的原因。他们获得的端粒相关研究发现,为找到预防措施对抗癌症、老化及其他疾病提供了一个有潜力的靶点。研究结果发表在7月11日的《分子细胞》(Molecular Cell)杂志上。   端粒是指位

人类能找到长寿密钥吗

  近日,有科学家发表报告称,通过详细分析超过50万人的基因信息以及这些人父母的寿命记录,确认了人类基因组中12个对寿命有显著影响的区域,理论上可以基于研究形成DNA“评分系统”评估人们的预期寿命。  分子生物学的诞生和发展,给了人们探问寿命谜题更精细的工具。然而无论工具如何变化,人类的终极目标却始

奇特的端粒酶与表观遗传关联

  在每次DNA复制完成后,染色体末端都会有轻微的缩短,这个末端重复序列也就是我们熟悉的端粒保护编码DNA区域。在干细胞中,端粒酶能延长端粒结构,因此细胞分裂能不断进行,而在体细胞中,由于编码端粒酶基因的催化亚基:端粒酶逆转录酶(telomerase reverse transcriptase,TE

Nature提出细胞自毁新学说

   我们染色体末端的特殊结构――端粒决定了细胞可以在多长的时间里继续复制自身。长期以来人们一直在研究它与衰老过程和癌症的关联。现在来自Salk研究所的一个研究发现表明,在细胞阻止肿瘤的自毁程序中端粒有可能比以往认为的要更加重要,有可能可以利用这一功能来改善癌症治疗。这项研究发布在《自然》(Natu

更新教科书:Cell揭示端粒酶内在工作机制

  “我们现在不仅看到了时钟的表面,而且也看到了内部机械运作,”UCLA化学和生物化学教授Juli Feigon说。“我们不断放大端粒酶以观察越来越多细节。如今,我们终于有能力开始推断这种酶如何发挥作用了。”Juli Feigon  文章报道了迄今所见的最高水平端粒酶催化核心结构,下图首次展示了在生

8月23日《自然》杂志精选

   完美“库仑拖拽”的实验演示   从一个导体中流过的电流,能够通过被称为“库仑相互作用”的电子—电子排斥力在另一个与第一个在空间上分开的导体中诱导产生电流。这样所产生的“拖拽电流”通常较小,但人们一直认为,在某些情况下这一电流有可能与驱动电流具有相同的量级。现在,这一预测通

Nature:错怪自噬行为了!原来它是重要抗癌机制!

   端粒和自噬相关机制的发现造就了2个诺贝尔医学或生理学奖。目前在这端粒和自噬两个看似并不相关的研究领域均趋于日渐成熟。随着自噬机制斩获诺奖,国内有关自噬的研究更是呈现井喷式的发展。但先前研究人员认为自噬在肿瘤的发生过程中起到促进作用,进而研发了相关的自噬抑制剂来辅助癌症患者的治疗,但最近来自Sa

重磅级文章解读2019年衰老领域研究新进展!

  时至岁末,转眼间2019年已经接近尾声,迎接我们的将是崭新的2020年,在即将过去的2019年里,科学家们在机体衰老研究领域取得了很多显著的成果,本文中,小编就对本年度科学家们在该研究领域取得的重磅级研究成果进行整理,分享给大家!图片来源:Fouquerel et al. (2019). Mol

哈佛科学家令老年鼠重获生育能力

  据香港《文汇报》11月30日报道,哈佛科学家最近破天荒地令年老的老鼠器官获得新生,成功逆转衰老过程,这项突破成果或有望防治脑退化症(老人痴呆症)、糖尿病和心脏病等疾病,甚至有望打开永恒青春的奥秘,进一步迈向研制“长生不老药”。  科学杂志《自然》网站28日刊登美国哈佛医学院的科研

Nature:靶向端粒或有望提高癌症化疗效果

  位于染色体末端的端粒决定细胞能持续自我复制的时间长久,一直以来人们关于端粒与衰老和癌症的研究比较多。Salk研究所的研究人员发现,端粒在细胞自毁程序(防止肿瘤)中的作用比以前认识的还要大,这可能被利用来提高癌症的治疗。  细胞每进行一次有丝分裂,端粒就缩短一点。最后经过多次细胞分裂,端粒变得非常

她用自己的18000代细胞打下了14万篇论文的地基

细胞分裂  如果你突然得知一位因病去世了 60 多年的长辈其实还“活着”,并且在全世界的实验室里被研究,至今繁殖了 18000 代,总重量达到 5000 万吨,你会作何感想?  一位黑人妇女 67 年前患上宫颈癌去世,她的癌细胞却流传了下来用做科学研究。而她的家人与子孙在她死后

深圳大学最新文章:端粒酶基因突变与癌症发生

  端粒是染色体末端一段特殊的重复核苷酸结构, 可防止染色体降解或融合. 端粒功能异常可导致衰老和癌症等多种疾病. 端粒酶逆转录酶(TERT)是端粒酶的催化亚基, 可有效保持端粒结构完整性. 近期来自深圳大学第一附属医院/深圳市第二人民医院,河北师范大学的研究人员发表综述,指出在黑色素瘤、神经胶质瘤