清华Nature子刊发表表观遗传学新成果

生物通报道:高等生物的基因组DNA围绕着由四种组蛋白组成的八聚体,形成碟状的核小体结构。基因组DNA以这样的形式包装成为染色质,使DNA受到良好的保护。通过“读取”模块识别组蛋白共价修饰是表观遗传学调控的一个主要机制。 最近人们发现了多种组蛋白赖氨酸酰化,比如巴豆酰化(Kcr)、丁酰化(Kbu)和丙酰化(Kpr),它们大大拓展了组蛋白赖氨酸修饰的编码能力。清华大学医学院的研究人员发现,双PHD锌指(DPF)结构域具有特异识别组蛋白巴豆酰化修饰的分子功能。这项研究发表在Nature Chemical Biology杂志上,文章通讯作者是清华大学医学院的李海涛(Haitao Li)教授。 李海涛研究团队今年年初首次把YEATS结构域鉴定为组蛋白巴豆酰化阅读器。现在他们又在组蛋白修饰调控领域取得了重要突破,深化了人们对巴豆酰化修饰生物学的理解和认识。 李海涛团队对MOZ和DPF2两类表观调控因子的DPF结构域开展了系统的定量......阅读全文

清华Nature子刊发表表观遗传学新成果

  生物通报道:高等生物的基因组DNA围绕着由四种组蛋白组成的八聚体,形成碟状的核小体结构。基因组DNA以这样的形式包装成为染色质,使DNA受到良好的保护。通过“读取”模块识别组蛋白共价修饰是表观遗传学调控的一个主要机制。  最近人们发现了多种组蛋白赖氨酸酰化,比如巴豆酰化(Kcr)、丁酰化(Kbu

DPF脉冲X射线能谱测量

采用滤光法对DPF脉冲X射线源装置的X射线能谱进行了测量,取得了较好的结果,为辐射效应环境测量提供了一种手段。 

结构域的分类

为了研究蛋白质分子结构的基本规律,人们用不同的方法从不同的角度对已知的蛋白质结构进行分类,有些是基于生物功能,有些是基于结构自身,有些是将二者结合在一起进行分类研究。例如,锌金属蛋白酶是一类可催化肽链内部肽键水解的肽链内切酶,尽管所属的各个亚家族成员的整体空间结构差异显著,但催化活性部位的结构非常类

抗体的结构域

  Ig分子的两条重链和两条轻链都可折叠成数个球形结构域(domain),每个结构域行使其相应的功能。轻链有VL和CL两个结构域;IgG、IgA和IgD的重链有VH、CH1、CH2和CH3四个结构域;IgM和IgE的重链有五个结构域,即多一个CH4结构域。每个结构域由约110个氨基酸组成,氨基酸序列

曹雪涛、刘娟发表Immunity文章:天然免疫及炎症调控新靶标

   树突状细胞(DC)是一类重要的天然免疫细胞,在激活机体抗病原体免疫应答及维持自身免疫耐受过程中发挥关键性调控作用。DC的体内迁移对于其成熟活化及功能调控至关重要,DC迁移紊乱可能导致DC在炎症部位的过度聚集及活化,导致组织过度炎症,甚至引发炎症性疾病的发生。探索DC迁移过程的调控机制对于深入了

抑制结构域的定义

中文名称抑制结构域英文名称inhibition domain定  义蛋白质三级结构中的一种结构单元,通过该结构域与特异结合的蛋白质作用可以抑制这种蛋白质的活性。应用学科生物化学与分子生物学(一级学科),酶(二级学科)

βαβ结构域的结构功能

中文名称β-α-β结构域英文名称β-α-β motif;betaalpha-beta motif定  义蛋白质超二级结构之一,由β折叠-α螺旋-β折叠所构成的功能结构域。应用学科细胞生物学(一级学科),细胞化学(二级学科)

简述抗体的结构域

  Ig分子的两条重链和两条轻链都可折叠成数个球形结构域(domain),每个结构域行使其相应的功能。轻链有VL和CL两个结构域;IgG、IgA和IgD的重链有VH、CH1、CH2和CH3四个结构域;IgM和IgE的重链有五个结构域,即多一个CH4结构域。每个结构域由约110个氨基酸组成,氨基酸序列

细胞化学基础βαβ结构域

中文名称:β-α-β结构域英文名称:β-α-β motif;betaalpha-beta motif定  义:蛋白质超二级结构之一,由β折叠-α螺旋-β折叠所构成的功能结构域。应用学科:细胞生物学(一级学科),细胞化学(二级学科)

SH结构域的概念

SH结构域(Src homology domain)是真核生物蛋白结构域,能够与受体酪氨酸激酶磷酸化残基紧密结合,从而形成蛋白的复合物来进行信号转导SH3结构域是最初在Src(一种癌基因)的研究中鉴定到的蛋白组件,它能够识别富含脯氨酸和疏水残基的蛋白质并与之结合,从而介导蛋白与蛋白的相互作用,SH3

结构域的结构特点

结构域(domain)是位于超二级结构和三级结构间的一个层次。结构域是在蛋白质的三级结构内的独立折叠单元,通常都是几个超二级结构单元的组合。在较大的蛋白质分子中,由于多肽链上相邻的超二级结构紧密联系,进一步折叠形成一个或多个相对独立的致密三维实体,即结构域。结构域与分子整体以共价键相连,一般难以分离

结构域的结构特点

结构域(domain)是位于超二级结构和三级结构间的一个层次。结构域是在蛋白质的三级结构内的独立折叠单元,通常都是几个超二级结构单元的组合。在较大的蛋白质分子中,由于多肽链上相邻的超二级结构紧密联系,进一步折叠形成一个或多个相对独立的致密三维实体,即结构域。结构域与分子整体以共价键相连,一般难以分离

抗体的结构域介绍

Ig分子的两条重链和两条轻链都可折叠成数个球形结构域(domain),每个结构域行使其相应的功能。轻链有VL和CL两个结构域;IgG、IgA和IgD的重链有VH、CH1、CH2和CH3四个结构域;IgM和IgE的重链有五个结构域,即多一个CH4结构域。每个结构域由约110个氨基酸组成,氨基酸序列具有

曹雪涛团队发现树突状细胞迁移与炎症调控的新靶标

  树突状细胞(DC)是一类重要的天然免疫细胞和专制性抗原提呈细胞,在激活机体抗病原体免疫应答及维持自身免疫耐受过程中发挥着关键性的调控作用。DC的体内迁移对于其成熟活化及功能调控至关重要,DC迁移紊乱可导致DC在炎症部位的过度聚集及活化,导致组织过度炎症,甚至引发炎症性疾病的发生【1】。探索DC迁

βαβ结构域的基本信息

中文名称β-α-β结构域英文名称β-α-β motif;betaalpha-beta motif定  义蛋白质超二级结构之一,由β折叠-α螺旋-β折叠所构成的功能结构域。应用学科细胞生物学(一级学科),细胞化学(二级学科)

结构域的基本性质

又称基元。蛋白质分子的一种折叠单位,是较大的蛋白质分子或亚基三维折叠中的一个层次或一种相对独立的三维实体。一条长链多肽链最后一步折叠就是结构域缔合(association),而成一个有活性的蛋白质分子或亚基。在一级(维)结构中的氨基酸序列的某些区域相邻的氨基酸残基形成有规则的二级(维)结构(如α-螺

结构域的基本类型

结构域的基本类型有4类:反平行d螺旋结构域(全d结构),平行或混合B折叠结构域(d、p结构)、反平行p折叠结构域(全3结构)和富含金属或二硫键结构域(不规则小蛋白质结构)。

结构域的基本性质

又称基元。蛋白质分子的一种折叠单位,是较大的蛋白质分子或亚基三维折叠中的一个层次或一种相对独立的三维实体。一条长链多肽链最后一步折叠就是结构域缔合(association),而成一个有活性的蛋白质分子或亚基。在一级(维)结构中的氨基酸序列的某些区域相邻的氨基酸残基形成有规则的二级(维)结构(如α-螺

SH结构域的研究发现

之前的研究表明,络氨酸磷酸化对SH3结构域的活性调节具有重要作用。来自布拉格查理学的研究人员阐明了该作用,并发现了SH3结构域内重要的序列模体ALYD(Y/F)。利用PhosphoSite Plus据库,他们发现,到当前止已经有超过100种不同的酪氨酸磷酸化作用发生在SH3结构域内20不同的位点。c

DNA-结构域的结构特点

结构域(domain)是位于超二级结构和三级结构间的一个层次。结构域是在蛋白质的三级结构内的独立折叠单元,通常都是几个超二级结构单元的组合。在较大的蛋白质分子中,由于多肽链上相邻的超二级结构紧密联系,进一步折叠形成一个或多个相对独立的致密三维实体,即结构域。结构域与分子整体以共价键相连,一般难以分离

结构域的基本结构特点

在蛋白质三级结构内的独立折叠单元。结构域通常都是几个超二级结构单元的组合至蛋白质多肽链在二级结构的基础上进一步卷曲折叠成几个相对独立的近似球形的组装体。结构域(Structural Domain)是介于二级和三级结构之间的另一种结构层次。所谓结构域是指蛋白质亚基结构中明显分开的紧密球状结构区域,又称

结构域的基本类型

结构域的基本类型有4类:反平行d螺旋结构域(全d结构),平行或混合B折叠结构域(d、p结构)、反平行p折叠结构域(全3结构)和富含金属或二硫键结构域(不规则小蛋白质结构)。

环状结构域的结构特点

中文名称环状结构域英文名称loop domain定  义核苷酸序列盘绕成不规则环形的二级结构,可以由序列两端的碱基配对而产生,也可由与蛋白质结合而产生。应用学科遗传学(一级学科),分子遗传学(二级学科)

结构域的基本类型

结构域的基本类型有4类:反平行d螺旋结构域(全d结构),平行或混合B折叠结构域(d、p结构)、反平行p折叠结构域(全3结构)和富含金属或二硫键结构域(不规则小蛋白质结构)。

比较组蛋白与非组蛋白的特点及其作用

组蛋白:特点:进化上的极端保守性;无组织特异性;肽链上氨基酸分布的不对称性;组蛋白的修饰作用。作用:1,核小体组蛋白,帮助DNA卷曲形成核小体的稳定结构2,H1组蛋白,在构成核小体时期连接作用,赋予染色体极性3,对染色体DNA的包装起着重要作用非组蛋白:特点:非组蛋白是一类酸性蛋白质,富含天冬氨酸和

表观遗传之组蛋白修饰—组蛋白乙酰化

大家好,我又来啦~~今天给大家放送的是表观遗传之组蛋白修饰相关的内容噢,组蛋白修饰也是一个比较复杂的过程,今天呢,我们就给大家讲讲组蛋白乙酰化及相关的产品。 一 组蛋白修饰 真核生物染色质的基本结构单位是核小体,它由约 146 bp DNA 缠绕组蛋白八聚体组成,其中组蛋白八聚体包含 2 (H2

比较组蛋白与非组蛋白的特点及其作用

组蛋白:特点:进化上的极端保守性;无组织特异性;肽链上氨基酸分布的不对称性;组蛋白的修饰作用。作用:1,核小体组蛋白,帮助DNA卷曲形成核小体的稳定结构2,H1组蛋白,在构成核小体时期连接作用,赋予染色体极性3,对染色体DNA的包装起着重要作用非组蛋白:特点:非组蛋白是一类酸性蛋白质,富含天冬氨酸和

组蛋白的简介

  重组蛋白的产生是应用了重组DNA或重组RNA的技术从而获得的蛋白质。目前,体外重组蛋白的生产主要包括四大系统:原核蛋白表达,哺乳动物细胞蛋白表达,酵母蛋白表达及昆虫细胞蛋白表达。生产的蛋白在活性和应用方法方面均有所不同。根据自身的下游运用选择合适的蛋白表达系统,提高表达成功率。

组蛋白的简介

  组蛋白(histone)是指所有真核生物的细胞核中,与DNA结合存在的碱性蛋白质的总称。其分子量约10000~20000。  真核生物体细胞染色质中的碱性蛋白质,含精氨酸和赖氨酸等碱性氨基酸特别多,二者加起来约为所有氨基酸残基的1/4。组蛋白与带负电荷的双螺旋DNA结合成DNA-组蛋白复合物。因

组蛋白的特点

染色体(chromosome)是基因的载体,染色体包括DNA和蛋白质两部分。真核细胞染色体上的蛋白质主要包括组蛋白和非组蛋白。组蛋白是一类较小而带有正电荷的核蛋白,与DNA有很高的亲和力。组蛋白是染色体的结构蛋白,它与DNA组成核小体。由DNA和组蛋白组成的染色质(chromatin)纤维细丝是许多