Antpedia LOGO WIKI资讯

冷冻电镜与它的新搭档成功破解了光合作用之谜

美国能源部劳伦斯伯克利国家实验室(简称伯克利实验室)的研究人员利用世界上最先进的显微镜揭示了对光合作用影响巨大的大型蛋白质复合体结构。 这项发表在Nature杂志上的发现将使科学家首次探索植物复杂功能,并可能对各种生物制品的生产产生重大影响。 “这项工作使我们更好地了解了光合作用是如何发生的,未来可使我们提高植物和其他绿色植物的光合作用效率——增加食物产量,”伯克利实验室的生物物理学家Karen Davies说。“这尤其重要,如果你想生产可再生的生物制品的话,它们是当前石油产品经济有效的替代。” 几十年前,研究人员发现了一种名为NADH脱氢酶样复合物(NDH)的蛋白质复合体,它被认为有助于调节光合作用,在这一阶段,光能被捕获并储存在两种类型的细胞能量分子中,这些分子随后被用来推动二氧化碳转化为糖。 过去的研究表明,NDH可以确保产生每个能量分子的正确比率,重新改组了转移给叶绿体其他蛋白质复合体的带电电子。此外,蓝藻的......阅读全文

汇全国显微学精英 2018全国电子显微学学术年会在蜀开幕

  分析测试百科网讯 2018年10月24日,2018年全国电子显微学学术年会在四川成都隆重举行,本次大会共有千余位专家学者以及200余位厂商代表参与。本次年会旨在了解电子显微学及相关仪器技术的前沿发展,交流基础研究与应用研究新进展。分析测试百科网与中国电子显微镜学会将共同全程跟踪报导本次年会的盛况

冷冻电镜横空出世,2019年清华大学独自发表16篇CNS

  冷冻电镜,是用于扫描电镜的超低温冷冻制样及传输技术(Cryo-SEM),可实现直接观察液体、半液体及对电子束敏感的样品,如生物、高分子材料等。冷冻电镜兴起于2013年,在2017年10月4日,瑞典皇家科学院宣布2017年度诺贝尔化学奖授予对冷冻电镜技术发展做出原创性贡献的3位科学家,他们分别是瑞

中科院生物物理研究所:活性“蛋白质” 捕光“梦工厂”

  蛋白质,英文名称“protein”,是生物体中广泛存在的一类生物大分子,也是生命活动的主要承担者。  时值春暖花开,在中国科学院生物物理研究所寻访,本报记者在这里看到的“蛋白质”,不仅充满科学的奥妙和神奇,而且彰显出其应有的活泼、活性与活力,恍若走进一所“梦工厂”。那么

高分辨率冷冻电镜首次解析超级复合物结构

  在国家重点研发计划“蛋白质机器与生命过程调控”重点专项的支持下,“光合作用重要蛋白质机器的结构、功能与调控”和“蛋白质机器的高分辨率冷冻电镜前沿技术及应用”项目联合攻关,取得突破进展,发现了植物的光适应与捕光调节新机制。图片源自网络   光合作用为世界上几乎所有的生命体提供赖以生存的物质和能量,

生命学院研究组报道首个完整藻胆体的冷冻电镜三维结构

  10月19日,清华大学生命科学学院隋森芳教授研究组在《自然》(Nature)期刊上在线发表题为《海洋红藻藻胆体的结构》(Structure of phycobilisome from the red alga Griffithsia pacifica)的研究论文,首次报道世界上第一个完整藻胆体的

清华大学发文报道首个完整藻胆体的冷冻电镜三维结构

  2017年10月19日,清华大学生命科学学院隋森芳教授研究组在《自然》(Nature)杂志上以长文(Research Article)形式在线发表题为《海洋红藻藻胆体的结构》(Structure of phycobilisome from the red alga Griffithsia pac

这个团队在光合作用捕光复合物研究中取得进展!

  经过我们公众号iPlants的查阅,发现以中国科学院生物物理所常文瑞院士为学术带头人,柳振峰研究组、章新政研究组与常文瑞/李梅研究组合作的团队已经在光合作用的捕光复合物研究中取得一系列重大的进展,实属了不起!其中包括以下成果:  1.2004年3月18日,Nature以封面彩图的形式发表来自中国

冷冻电镜“新玩法” 近原子分辨率助力观察完整藻胆体

  近日,科技部发布了技术成果——膜生物学国家重点实验室首次揭示完整藻胆体的三维结构。其中利用近原子分辨率的冷冻电镜获得了完整藻胆体的近原子分辨率的三维结构。攻克了藻胆体在冷冻制样时盐浓度高、稳定性差、具有优势取向等难题,整体结构分辨率达到3.5,核心区域分辨率达到3.2。  光合作用是地球上的生物

隋森芳团队等揭示硅藻光系统超级复合物冷冻电镜结构

  硅藻是海洋主要的浮游生物之一,贡献了地球上每年原初生产力的20%左右,且在生物地球化学循环中起着重要作用,这都与其光系统II(PhotosystemII,PSII)以及外周捕光天线的功能密切相关。不同于绿藻和高等植物,硅藻PSII的外周捕光天线是结合了岩藻黄素和叶绿素a/c的蛋白(Fucoxan

隋森芳等揭示硅藻光系统II-捕光天线超级复合体结构

硅藻是海洋主要的浮游生物之一,贡献了地球上每年原初生产力的20%左右,且在生物地球化学循环中起着重要作用,这都与其光系统II(PhotosystemII,PSII)以及外周捕光天线的功能密切相关。不同于绿藻和高等植物,硅藻PSII的外周捕光天线是结合了岩藻黄素和叶绿素a/c的蛋白(Fucoxanth

大跃进 | 中国学者CNS发表超过100篇生命科学领域研究成果

  截至2019年12月13日,中国学者在Cell,Nature及Science在线发表了105篇文章(2019年的Cell已经全部更新完毕,而对于Nature及Science只剩下了一期,将分别会12月19日及20日进行更新),小编对于这些文章做了系统的总结:  按杂志来划分:Cell 发表了30

2019中国生命科学领域CNS盘点:曹雪涛 颜宁 施一公上榜

  截至2019年12月23日,中国学者在Cell,Nature及Science在线发表了107篇文章(2019年的Cell ,Nature 及Science 已经全部更新),iNature团队对于这些文章做了系统的总结:  按杂志来划分:Cell 发表了31篇,Nature 发表了44篇,Scie

2019年中国学者发表CNS统计,谁是CNS发表之王?

  截至2019年12月31日,中国学者在Cell,Nature及Science在线发表了186篇文章,其中生命科学领域有109篇,材料学有30篇,物理学有20篇,化学有12篇,地球科学有15篇。iNature团队对于这些文章做了系统的总结:  按杂志来划分:Cell 发表了31篇,Nature 发

膜生物学国家重点实验室首次揭示完整藻胆体的三维结构

   光合作用是地球上的生物赖以生存的基础。为了获取更多的光能,生物体发展出了多种捕光蛋白系统。其中存在于蓝藻和红藻中的藻胆体是迄今已知的最大的捕光蛋白复合物,它位于膜表面,并与位于膜中的光和反应中心结合,能将吸收的太阳光以极高的效率传递给光合反应中心以便进一步转化为有机物并释放氧气。这个巨大的超分

研究发现植物光合作用中高效捕光的超分子机器结构

  8月25日,《科学》杂志发表了中国科学院生物物理研究所常文瑞/李梅研究组、章新政研究组与柳振峰研究组的最新合作研究成果。该项工作报道了豌豆光系统II-捕光复合物II超级复合物的高分辨率电镜结构,揭示了植物在弱光条件下进行高效捕光的超分子基础。  光合作用是地球上最为重要的化学反应之一。植物、藻类

Science杂志最受关注的文章(1月)

  现如今,科学家已经证明,遗传物质就像音乐乐谱一样,指挥着铜乐,弦乐,打击乐器等创作出交响乐来,当单个细胞中的基因开启时,我们可以通过技术组合揭示细胞是如何发挥其特殊的作用,从而以惊人的力量,逐个细胞,实时追踪生物和器官的发育。  美国的《Science》杂志由爱迪生投资创办,是国际上著名的自然科

2019年中国学者86篇Cell,Nature及Science文章汇总

  2019年上半年很快就结束了,iNature盘点了中国学者在Cell,Nature及Science发表的成果,我们发现总共有86篇(截至2019年6月24日),具体介绍如下:  4-6月发表的文章  【1】2019年6月21日,西北工业大学王文,中科院昆明动物研究所/BGI 张国捷及丹麦哥本哈根

光合作用光能捕获与能量传递的结构基础研究

光合作用作为地球上生物利用太阳能的重要反应,一直是科学研究关注的重点,是植物抗逆性研究、作物高产研究的热点。光合作用根据其反应阶段可以分为基于光能吸收传递转化的光反应和基于CO2同化等酶促过程的暗反应。光反应作为植物利用太阳能的原初反应,光能的吸收传递和转化主要发生在植物叶片或者藻类的类囊体膜上,由

蓝藻光合作用环式电子传递的结构基础研究获进展

  1月30日,《自然-通讯》(Nature Communications)期刊以Article形式发表了中国科学院生物物理研究所常文瑞/李梅研究组、章新政研究组及中科院分子植物科学卓越创新中心/植物生理生态研究所米华玲研究组的合作研究成果,题为Structural basis for electr

蓝藻多亚基膜蛋白复合物NDH-1L三维结构什么样?TEM告诉你

  2020年1月30日,Nature Communications期刊以Article形式在线发表了中国科学院生物物理研究所常文瑞/李梅研究组、章新政研究组及中国科学院分子植物科学卓越创新中心米华玲研究组的合作研究成果,题为“Structural basis for electron transp

生物物理所在光合作用超级复合物结构研究中获重要进展

  近日,中国科学院生物物理研究所柳振峰研究组、章新政研究组与常文瑞/李梅研究组通力合作,联合攻关,通过单颗粒冷冻电镜技术,在3.2埃分辨率下解析了高等植物(菠菜)光系统II-捕光复合物II超级膜蛋白复合体(PSII-LHCII supercomplex)的三维结构。该项研究工作于5月18日在《自然

中国学者最新Nature文章

  近日,中国科学院生物物理研究所柳振峰研究组、章新政研究组与常文瑞/李梅研究组通力合作,联合攻关,通过单颗粒冷冻电镜技术,在3.2埃分辨率下解析了高等植物(菠菜)光系统II-捕光复合物II超级膜蛋白复合体(PSII-LHCII supercomplex)的三维结构。该项研究工作于5月18日在《自然

研究揭示植物的光适应与捕光调节机制

  6月8日,《科学》(Science)期刊发表了中国科学院生物物理研究所常文瑞/李梅研究组、章新政研究组的合作研究成果,题为Structure of the maize photosystem I supercomplex with light-harvesting complexes I and

生物物理所 绿藻光系统I高效捕获及传递光能的分子机制

  3月8日,Nature Plants 杂志在线发表了中国科学院生物物理研究所常文瑞/李梅研究组与章新政研究组的合作研究成果,题为Antenna arrangement and energy transfer pathways of a green algal photosystem I-LHCI

我国揭示植物适应多变光照条件光系统的捕光调节机制

  近日,Science期刊发表了题为“Structure of the maize photosystem I supercomplex with light-harvesting complexes I and II”。该项工作首次报道了玉米光系统I-捕光复合物I-捕光复合物II(PSI-LHC

2019年中国学者发表CNS统计,谁是CNS发表之王?

  【51/52】2019年4月4日,清华大学柴继杰课题组、中科院遗传发育所周俭民课题组和清华大学王宏伟课题联合同期背靠背发表两篇重量级Science文章,完成了植物NLR蛋白复合物的组装、结构和功能分析,揭示了NLR作用的关键分子机制,是植物免疫研究的里程碑事件。两篇文章分别是: "Li

大跃进 | 中国学者CNS发表超过100篇生命科学领域研究成果

  【50】2019年4月12日,中科院上海药物所徐华强,王明伟,浙江大学张岩及匹兹堡大学医学院Jean-Pierre Vilardaga共同通讯在Science发表题为“Structure and dynamics of the active human parathyroid hormone r

Science杂志最受关注的文章(1月)

  美国的《Science》杂志由爱迪生投资创办,是国际上著名的自然科学综合类学术期刊,与英国的《Nature》杂志被誉为世界上两大自然科学顶级杂志。Science杂志主要发表原始性科学成果、新闻和评论,许多世界上重要的科学报道都是首先出现在Science杂志上的,比如艾滋病与人类免疫缺陷病毒之间的

同期Science发表三篇中国学者成果

  最新一期(10月20日)Science杂志公布了三项中国学者的最新成果:首次解析了生物最古老的光受体之一——隐花色素的工作机制、揭秘脊椎动物颌演化之路,以及2型Ryanodine受体RyR2门控机制的结构基础。  首先来自福建农林大学的研究人员首次解析了生物最古老的光受体之一——隐花色素的工作机

我国科学家在藻类捕光天线蛋白领域取得新进展

  硅藻贡献了地球上每年原初生产力的20%左右,这都与其光系统II(PhotosystemII,PSII)以及外周捕光天线的功能密切相关。硅藻PSII的外周捕光天线结合了岩藻黄素和叶绿素a/c的蛋白(FucoxanthinChl a/c binding proteins,FCPs),具有强大的蓝绿光