Antpedia LOGO WIKI资讯

原子力显微镜的结构及应用特点

原子力显微镜(Atomic Force Microscope,AFM),一种可用来研究包括绝缘体在内的固体材料表面结构的分析仪器。它通过检测待测样品表面和一个微型力敏感元件之间的极微弱的原子间相互作用力来研究物质的表面结构及性质。将一对微弱力极端敏感的微悬臂一端固定,另一端的微小针尖接近样品,这时它将与其相互作用,作用力将使得微悬臂发生形变或运动状态发生变化。扫描样品时,利用传感器检测这些变化,就可获得作用力分布信息,从而以纳米级分辨率获得表面形貌结构信息及表面粗糙度信息。......阅读全文

原子力显微镜的结构及应用特点

原子力显微镜(Atomic Force Microscope,AFM),一种可用来研究包括绝缘体在内的固体材料表面结构的分析仪器。它通过检测待测样品表面和一个微型力敏感元件之间的极微弱的原子间相互作用力来研究物质的表面结构及性质。将一对微弱力极端敏感的微悬臂一端固定,另一端的微小针尖接近样品,这时它

原子力显微镜的仪器结构特点

在原子力显微镜(Atomic Force Microscope,AFM)的系统中,可分成三个部分:力检测部分、位置检测部分、反馈系统。力检测部分在原子力显微镜(AFM)的系统中,所要检测的力是原子与原子之间的范德华力。所以在本系统中是使用微小悬臂(cantilever)来检测原子之间力的变化量。微悬

原子力显微镜的原理及应用

  因为有了超级天文望远镜,我们可以拍下宇宙的永恒美丽; 因为有了照相机,我们可以记录大自然的千奇百怪和绚烂多彩;因为有了光学显微镜,我们揭开了微观世界神秘面纱的一角。然而,由于光波衍射现象的限制,传统光学显微镜的放大率不能无限提高,我们对纳米世界(

原子力显微镜的结构

它的结构主要包括带针尖的微悬臂、微悬臂运动检测装置、监控其运动的反馈回路、使样品进行扫描的压电陶瓷扫描器件等,而扫描器件是原子力显微镜中位置控制的最重要的部分,需要提供纳米级精度且高性能的扫描器,芯明天公司提供悬臂式压电陶瓷管扫描器、压电物镜定位器、二维XY或三维XYZ的压电纳米定位台,如下图所示,

原子力显微镜特点

原子力显微镜(Atomic Force Microscope,简称AFM)利用微悬臂感受和放大悬臂上尖细探针与受测样品原子之间的作用力,从而达到检测的目的,具有原子级的分辨率。由于原子力显微镜既可以观察导体,也可以观察非导体,从而弥补了扫描隧道显微镜的不足。原子力显微镜是由IBM公司苏黎世研究中心的

原子力显微镜的特点

原子力显微镜的特点  1.高分辨力能力远远超过扫描电子显微镜(SEM),以及光学粗糙度仪。样品表面的三维数据满足了研究、生产、质量检验越来越微观化的要求。  3.应用范围广,可用于表面观察、尺寸测定、表面粗糙测定、颗粒度解析、突起与凹坑的统计处理、成膜条件评价、保护层的尺寸台阶测定、层间绝缘膜的平整

原子力显微镜的特点

原子力显微镜的特点1.高分辨力能力远远超过扫描电子显微镜(SEM),以及光学粗糙度仪。样品表面的三维数据满足了研究、生产、质量检验越来越微观化的要求。2.非破坏性,探针与样品表面相互作用力为10-8N以下,远比以往触针式粗糙度仪压力小,因此不会损伤样品,也不存在扫描电子显微镜的电子束损伤问题。另外扫

原子力显微镜探针的分类及应用

     原子力显微镜是一种具有原子分辨率的表面形貌、电磁性能分析的重要仪器。原子力显微镜探针由于应用范围仅限于原子力显微镜,属于高科技仪器的耗材,应用领域不广,全世界的使用量也不多。原子力显微镜探针的分类  原子力显微镜探针基本都是由MEMS技术加工Si或者Si3N4来制备。探针针尖半径一般为10

导电原子力显微镜的原理及应用

导电原子力显微镜(CAFM)是传统原子力显微镜的衍生物,除了力敏感器和力探测器,扫描所用的针尖是导电的,附加一个灵敏电流表。导电原子力显微镜在获取样品表面形貌信息的同时,可以获得和形貌一一对应的局域电导信息。导电原子力显微镜简介  自应用以来,导电原子力显微镜主要用来对电学传输性质各向异性的固体材料

原子力显微镜仪器结构

在原子力显微镜(Atomic Force Microscope,AFM)的系统中,可分成三个部分:力检测部分、位置检测部分、反馈系统。力检测部分在原子力显微镜(AFM)的系统中,所要检测的力是原子与原子之间的范德华力。所以在本系统中是使用微小悬臂(cantilever)来检测原子之间力的变化量。微悬

原子力显微镜结构的分析

在原子力显微镜(AFM)的系统中,所要检测的力是原子与原子之间的范德华力。所以在本系统中是使用微小悬臂(cantilever)来检测原子之间力的变化量。微悬臂通常由一个一般100~500μm长和大约500nm~5μm厚的硅片或氮化硅片制成。微悬臂顶端有一个尖锐针尖,用来检测样品-针尖间的相互作用力。

原子力显微镜的结构组成

主要由带针尖的微悬臂、微悬臂运动检测装置、监控其运动的反馈回路、使样品进行扫描的压电陶瓷扫描器件、计算机控制的图像采集、显示及处理系统组成。微悬臂运动可用如隧道电流检测等电学方法或光束偏转法、干涉法等光学方法检测,当针尖与样品充分接近相互之间存在短程相互斥力时,检测该斥力可获得表面原子级分辨图像,一

原子力显微镜的原理、结构

      原子力显微镜(AFM)用一个微小的探针来“摸索”微观世界,它超越了光和电子波长对显微镜分辨率的限制,在立体三维上观察物质的形貌,并能获得探针与样品相互作用的信息。原子力显微镜具有分辨率高、操作容易、样品准备简单、操作环境不受限制、分辨率高等优点。因此,原子力显微镜正在迅速应用于科学研究的

原子力显微镜的技术特点

优点相对于扫描电子显微镜,原子力显微镜具有许多优点。不同于电子显微镜只能提供二维图像,AFM提供真正的三维表面图。同时,AFM不需要对样品的任何特殊处理,如镀铜或碳,这种处理对样品会造成不可逆转的伤害。第三,电子显微镜需要运行在高真空条件下,原子力显微镜在常压下甚至在液体环境下都可以良好工作。这样可

原子力显微镜的功能、特点

      原子力显微镜是利用原子之间的作用力通过仪器的检测系统、反馈系统等成像的仪器。具有原子级别分辨率,成像分辨率高,并且能提供三维表面图,近年来在纳米功能材料、生物、化工和医药方面得到广泛的使用。原子力显微镜的功能  原子力显微镜最基本的功能是:通过检测探针和样品作用力来表征样品表面的三维形貌

原子力显微镜(AFM)仪器结构及优缺点

优缺点优点原子力显微镜观察到的图像相对于扫描电子显微镜,原子力显微镜具有许多优点。不同于电子显微镜只能提供二维图像,AFM提供真正的三维表面图。同时,AFM不需要对样品的任何特殊处理,如镀铜或碳,这种处理对样品会造成不可逆转的伤害。第三,电子显微镜需要运行在高真空条件下,原子力显微镜在常压下甚至在液

原子力显微镜及其应用

      原子力显微镜是以扫描隧道显微镜基本原理发展起来的扫描探针显微镜。原子力显微镜的出现无疑为纳米科技的发展起到了推动作用。以原子力显微镜为代表的扫描探针显微镜是利用一种小探针在样品表面上扫描,从而提供高放大倍率观察的一系列显微镜的总称。原子力显微镜扫描能提供各种类型样品的表面状态信息。与常规

原子力显微镜及其应用

 原子力显微镜及其应用      原子力显微镜是以扫描隧道显微镜基本原理发展起来的扫描探针显微镜。原子力显微镜的出现无疑为纳米科技的发展起到了推动作用。以原子力显微镜为代表的扫描探针显微镜是利用一种小探针在样品表面上扫描,从而提供高放大倍率观察的一系列显微镜的总称。原子力显微镜扫描能提供各种类型样品

原子力显微镜及其应用

原子力显微镜是以扫描隧道显微镜基本原理发展起来的扫描探针显微镜。原子力显微镜的出现无疑为纳米科技的发展起到了推动作用。以原子力显微镜为代表的扫描探针显微镜是利用一种小探针在样品表面上扫描,从而提供高放大倍率观察的一系列显微镜的总称。原子力显微镜扫描能提供各种类型样品的表面状态信息。与常规显微镜比较,

原子力显微镜的应用学科

AFM系统使用压电陶瓷管制作的扫描器精确控制微小的扫描移动。压电陶瓷是一种性能奇特的材料,当在压电陶瓷对称的两个端面加上电压时,压电陶瓷会按特定的方向伸长或缩短。而伸长或缩短的尺寸与所加的电压的大小成线性关系。也就是说,可以通过改变电压来控制压电陶瓷的微小伸缩。通常把三个分别代表X,Y,Z方向的压电

原子力显微镜探针、原子力显微镜及探针的制备方法

原子力显微镜探针、原子力显微镜及探针的制备方法。原子力显微镜探针包括探针本体和设置在探针本体的针尖一侧的接触体,接触体具有连接段和接触段,接触段具有接触端面;接触段为二维材料,且接触端面为原子级光滑且平整的单晶界面。本发明ZL技术的原子力显微镜探针可精确地检测受测样品的各种性质。介绍随着微米纳米科学

原子力显微镜的特点有哪些?

  1.高分辨力能力远远超过扫描电子显微镜(SEM),以及光学粗糙度仪。样品表面的三维数据满足了研究、生产、质量检验越来越微观化的要求。  2.非破坏性,探针与样品表面相互作用力为10-8N以下,远比以往触针式粗糙度仪压力小,因此不会损伤样品,也不存在扫描电子显微镜的电子束损伤问题。另外扫描电子显微

原子力显微镜(AFM)应用举例

1, Lateral Force Microscopy 测量样品表面的摩擦力。2, 活体细胞测量3, chemical force microscopy 测量两个化合物之间的作用力。4, quantitative  nanomechanical 测量样品的形貌、模量、表面粘滞力、能量损失和形变量。5

原子力显微镜的原理和应用

原子力显微镜(AFM)是一种可用来研究包括绝缘体在内的固体材料表面结构的分析仪器。原子力显微镜自从问世以来在生物学研究中有其不可替代的作用,以其样品制备简单,可在多种环境中运作,高分辨率等优势,成为生命科学研究中不可缺少的工具。原子力显微镜工作原理:通过检测待测样品表面和一个微型力敏感元件之间的极微

原子力显微镜的原理及其应用

原子力显微镜(Atomic Force Microscope,AFM)基本原理:将一个队微弱力极敏感的微悬臂一端固定,另一端有一个微小的针尖,其尖端原子与样品表面原子间存在及极微弱的排斥力,利用光学检测法或隧道电流检测法,通过测量针尖与样品表面原子间的作用力获得样品表面形貌的三维信息。可用来研究包括

原子力显微镜的应用都有哪些

可以提供三维表面形貌图像,包括表面粗糙度、高度差和间距等,还可以测量样品的其他特性,例如电学、磁学、力学等特性。所以它可以应用在像聚合物、半导体、太阳能、生物医学、材料科学等广泛的领域。

原子力显微镜的应用相关介绍

  1. 形貌观察:AFM可以对样品表面形态、纳米结构、链构象等方面进行研究。  2 . AFM在高分子科学方面的应用  (1) 高分子表面形貌和纳米结构的研究  图为所示为常规的AFM在高分子方面的应用.高分子的形貌可以通过接触式AFM、敲击式AFM来研究。接触式AFM研究形貌的分辨率与针尖和样品

原子力显微镜的原理和应用

原子力显微镜(AFM)是一种可用来研究包括绝缘体在内的固体材料表面结构的分析仪器。原子力显微镜自从问世以来在生物学研究中有其不可替代的作用,以其样品制备简单,可在多种环境中运作,高分辨率等优势,成为生命科学研究中不可缺少的工具。原子力显微镜工作原理:通过检测待测样品表面和一个微型力敏感元件之间的极微

原子力显微镜的原理及其应用

一种可用来研究包括绝缘体在内的固体材料表面结构的分析仪器。它通过检测待测样品表面和一个微型力敏感元件之间的极微弱的原子间相互作用力来研究物质的表面结构及性质。将一对微弱力极端敏感的微悬臂一端固定,另一端的微小针尖接近样品,这时它将与其相互作用,作用力将使得微悬臂发生形变或运动状态发生变化。扫描样品时

原子力显微镜的原理及其应用

原子力显微镜(Atomic Force Microscope,AFM)基本原理:将一个队微弱力极敏感的微悬臂一端固定,另一端有一个微小的针尖,其尖端原子与样品表面原子间存在及极微弱的排斥力,利用光学检测法或隧道电流检测法,通过测量针尖与样品表面原子间的作用力获得样品表面形貌的三维信息。可用来研究包括