Antpedia LOGO WIKI资讯

物理所金属纳米线集成纳米光学芯片的原理研究获新进展

金属纳米结构中的表面等离激元具有许多奇特的光学性质,如光场局域效应、透射增强、共振频率对周围环境敏感等,因而被广泛应用于纳米集成光学器件、癌症热疗、光学传感、增强光催化、太阳能电池以及表面增强拉曼光谱等。其中,利用表面等离激元设计与制作亚波长光学器件是一个崭新而迅速发展的研究方向。在一维金属纳米结构中,表面等离激元可以将光场限制在远小于光波长的横截面内,这一特性为光学芯片的高密度集成奠定了理论基础。 近年来,中科院物理研究所/北京凝聚态物理国家实验室(筹)徐红星研究组围绕基于金属纳米线的集成纳米光学芯片的原理开展了一系列原创性的研究工作,包括表面等离激元在纳米线中的角发射规律[Nano Lett. 9(12), 4383 (2009)],纳米线等离激元与单分子和单量子点的相互作用 [Nano Lett. 9(5), 2049 (2009), Nano Lett. 9(12), 4168 (2009)]、基于......阅读全文

物理所在表面等离激元的量子效率及传播调控方面取得进展

  表面等离激元是一种束缚在金属和介质材料交界面上的表面电磁波,这种电磁波与金属的振荡电荷相互耦合在一起向前传输,其场分布被束缚在亚波长尺寸之下,突破了经典光学中的衍射极限,可作为未来纳米光子器件和光子回路的信息载体。金属纳米线是一种基本的可以传输表面等离激元的准一维结构,可作为表面等离激元信号的传

表面等离激元首次实现单个量子光源的超分辨选择性激发

  光的衍射极限限制了常规光学成像的分辨率和介质光子器件的尺寸,将对光的操控和利用制约在波长水平;而金属纳米结构的表面等离激元可以将光场束缚在纳米结构表面,使突破衍射极限的纳米尺度光操控成为可能。金属纳米线不仅具有显著的局域电磁场增强效应,可以在纳米尺度上增强光与原子、分子、量子点、色心等纳米量子光

研究提出金属纳米线制备新方法

  金属纳米线生长机理(左)与所制备的各种金属纳米线(右)   金属纳米线具有优异的电、光、磁与热学性能,在微电子、光电子、催化与传感器等领域具有诱人的应用前景。目前,基于多孔模板合成金属纳米线的实验室方法主要有电沉积法与无电沉积法。然而,这两种方法都有其不可克服的缺点。前者在制备过程中需要消

半导体所等在纳米线量子点单光子发射研究中获得新发现

  半导体自组织InAs量子点因其具有“类原子”特性,是目前量子物理和量子信息器件研究最重要的固态量子结构之一。基于InAs量子点的高品质单光子的发射、读取、操纵、存储以及并行计算等是热点研究方向。而InAs单量子点的可控制备(如精确定位、有序扩展、与光学谐振腔耦合等)是目前面临的挑战性问题。  

物理所金属纳米线集成纳米光学芯片的原理研究获新进展

  金属纳米结构中的表面等离激元具有许多奇特的光学性质,如光场局域效应、透射增强、共振频率对周围环境敏感等,因而被广泛应用于纳米集成光学器件、癌症热疗、光学传感、增强光催化、太阳能电池以及表面增强拉曼光谱等。其中,利用表面等离激元设计与制作亚波长光学器件是一个崭新而迅速发展的研究方向

绚丽量子点10月绽放中国纳博会

  比彩虹还要美的是什么?在王允军看来,这只能是他的量子点。  王允军是苏州星烁纳米科技有限公司董事长,在量子点技术领域深耕多年,2012年从美国归国创业,扎根苏州纳米城,先后获评苏州工业园区纳米技术科技领军人才、金鸡湖双百人才计划、姑苏创新创业领军人才和江苏省“双创计划”人才等称号。  据了解,量

拓扑量子计算的各种平台及最新进展

  2021年9月22日,拓扑量子计算进展研讨会在北京举行。这次研讨会由中国科学院大学卡弗里理论科学研究所组织,由卡弗里所与中国科学院物理研究所共同举办。拓扑量子计算是利用拓扑材料中具有非阿贝尔统计的准粒子构筑量子比特、执行量子计算的研究方案。由于材料的拓扑稳定性,拓扑量子计算有望解决量子比特退相干

物理所基于等离激元的全光逻辑和半加器研究取得新进展

  近年来,中科院物理研究所/北京凝聚态物理国家实验室(筹)徐红星研究组在金属纳米线的等离激元性质研究方面做出了一系列工作,对传播的等离激元激发的拉曼散射,与量子点的相互作用、发射方向、发射偏振、分光特性、衬底效应等基本问题进行了深入的探讨。最近,徐红星研究组的魏红博士等在实现纳米尺

铂—非贵金属合金纳米线让析氢变得更容易

  记者8月9日从西安交通大学获悉,该校前沿科学技术研究院高传博教授课题组利用表面硫修饰的铂—非贵金属合金纳米线作为催化剂,在碱性条件下实现了高效的电解水析氢性能。这一成果发表在最新出版的国际化学领域权威期刊《德国应用化学》上,该催化剂是通过简单的水热方法合成的,具有较低的制备成本。  碱性条件下的

纳米量子点有望带来生物医学突破

  俄罗斯国立核能研究大学莫斯科工程物理学院正在研究量子点在生物医学领域的应用。  量子点(也被称为“人工原子”)是半导体晶体,尺寸非常的小,也是一种纳米粒子。其导入人体的主要障碍是它们对活细胞存在毒性。俄科学家让这些粒子保持在2.5纳米—5纳米大小,以便能近100%地从人体排出。  目前,该团队正