Antpedia LOGO WIKI资讯

二氧化碳监测仪可用于控制气肥

二氧化碳监测仪是目前农业、工业、生活中非常实用的测量设备,顾名思义,用于测量空气中的二氧化碳含量,尤其是在农业生产中,控制好二氧化碳含量,可有效提升作物的产量和品质。 就比如现在很多温室大棚中就会施用二氧化碳气肥,其中最关键的两点就在于严格控制二氧化碳施用量和合理安排施用时间。适宜的二氧化碳浓度可促进光合作用,但过高(空气中二氧化碳的体积分数超过0.5%-0.6%)则会降低光合作用效率。因此利用二氧化碳监测仪来检测大棚中的二氧化碳含量,可以精确获知大棚 中的二氧化碳含量情况,在最合适的时间,为温室大棚生产增加合适的二氧化碳施用量,从而达到提高温室作物光合作用效率,增产增收的效果。 另外,对于不同的温室作物,以及作物生育阶段的不同,所需施加的二氧化碳含量也是不同的,比如说......阅读全文

二氧化碳监测仪可用于控制气肥

    二氧化碳监测仪是目前农业、工业、生活中非常实用的测量设备,顾名思义,用于测量空气中的二氧化碳含量,尤其是在农业生产中,控制好二氧化碳含量,可有效提升作物的产量和品质。       就比如现在很多温室大棚中就会施用二氧化碳气肥,其中最关键的两点就在于严格控制二氧化碳施用量和合理安排施用时间

二氧化碳监测仪在大棚气肥施用中的监测应用

大棚种植技术不断扩大,在经过长期的试验对比之后,我们可以总结出大棚内二氧化碳浓度 对作物的生长产量有十分大的影响。就在同一个大棚内,在同样的管理水平和品种条件下,施用二氧化碳气肥的黄瓜,比起未施用的,叶片浓绿,茎杆粗壮,结瓜率 高。通过人工增施二氧化碳气肥,将棚内二氧化碳浓度提高到700一1000

二氧化碳监测仪在大棚蔬菜种植中的应用

光合作用是作物产值的保证,即植物运用太阳光将二氧化碳和水组成碳水化合物,可是空气中的二氧化碳含量比较低,这样就不利于作物的产值进步,所以在温室或许速率大棚内增施二氧化碳就可以大幅度的添加蔬菜产值。不一样植物在不一样气候条件下对co2的要求是不一样的。若CO2浓度超越限额,农作物反而减产。所 以要运

研究发现味精可致增肥

  自1908年首次发现味精以来,对味精的研究主要关注于其潜在的神经毒性。美国食品药品监督管理局已将味精认定为一般安全食品添加剂,可以在食品行业应用。最近的研究发现,味精可能参与肥胖的发生,相关的争论较为激烈。为进一步证实味精对机体代谢的作用,中国科学院亚热带农业生态研究所中国工程院院士印遇龙

二氧化碳检测仪分析温室大棚施用气肥的时间

温室大棚内的光照、温度、湿度和二氧化碳浓度等条件都与露地栽培存在着明显的差异。通 过使用二氧化碳检测仪在温室大棚内的监测总结发现,温室和塑料大棚内的二氧化碳含量在日出后两个小时供给不足,这种现像会持续到下午4时许,这对温室大棚 内的作物生长有着十分明显的抑制影响。 在大棚黄瓜种植过程中,利用

温室大棚气肥施用需要二氧化碳检测仪提供数据

温室反季节栽培是现代农业中常见的,二氧化碳的匮乏对蔬菜产量的影响是很大的,在温室内适时、适量地增施CO2,对蔬菜作物的长势、产量、品质等均具有明显的改善和提高。对于温室内二氧化碳的施用技术需要利用二氧化碳检测仪进行有效的检测分析,为温室co2的变化状况进行有效的分析,从而制定出合理的施肥措施。

二氧化碳检测仪在温室增施气肥的作用

在反季节栽培的现代化温室中,CO2匮乏是影响蔬菜产量的一个主要因素。在温室内适时、适量地增施CO2,对蔬菜作物的长势、产量、品质等均具有明显的改善和提高。二氧化碳检测仪试图分析温室内CO2变化状况,总结一套温室施用CO2气肥的适用技术。 秋天由于番茄处于营养生长期,光合强度小,消耗CO2少,

二氧化碳监测仪在温室大棚中控制的作用

温室大棚在现代农业中的应用十分常见的,作为一个相对封闭的环境使得大棚里的二氧化碳浓度不足和日夜变化大,这对植物生长发育的影响是很大的。为了能够根据各种植物的生长需要,利用现代电子设备二氧化碳监测仪对二氧化碳浓度进行测量和控制,将浓度控制在最佳状态,使植物始终处于最佳生长环境中,获得最好的收成。

二氧化碳监测仪帮助及时增加大棚中的二氧化碳含量

    一般来说,蔬菜总干重的90%~95%来自光合作用,光合作用的主要原料是二氧化碳。大棚蔬菜在光照充足、温度适宜的条件下,常发生二氧化碳含量不足的情况,因此就需要使用二氧化碳监测仪来进行检测,从而能够及时增加大棚中的二氧化碳含量,促进蔬菜的光合作用,提高产量。    在现代温室生产中,人们已经充

农业环境监测仪在农业温室气体减排监测中的应用

气候变化是一个全球性的问题,温室效应的不断加剧,让人们开始考虑各行业所造成的温室 气体的排放是否可以控制。在农业生产生活中,所产生的温室气体是一个复杂的过程。土壤中的有机物质要经过微生物的分解,然后以二氧化碳的形式释放进入大 气,CH、可在氏期淹水的农田中经发酵作用产生,全球一半以上的N,0来自土