Antpedia LOGO WIKI资讯

自噬在支持细胞中参与外质特化结构组装的新机制

近期,中国科学院动物研究所李卫研究组发现自噬在支持细胞中参与外质特化结构的组装,支持细胞中自噬相关基因的缺失会导致畸形精子症的发生。该项研究成果在线发表在3月17日的autophagy 杂志上。 目前,全世界范围内人类精子数量下降、活力降低、畸形率增加,处于大规模城市化过程中的我国,不孕不育发病率已飙升至10-15%。男性不育病因非常复杂, 许多内外因素均可导致男性不育,其中精子畸形是重要原因之一。体细胞-生殖细胞互作是精子发生过程中几个至关重要的环节。支持细胞(Sertoli cell)除了形成血睾屏障构筑精子发生的微环境以外,还通过外质特化结构等与生殖细胞之间交互作用参与精子头部特定形态建成。但是外质特化结构组装的分子机制还不甚清楚,研究人员发现支持细胞中自噬流被阻断以后会导致大量畸形精子的产生。进一步的研究发现自噬在支持细胞中通过降解PDLIM1参与在外质特化结构的组装过程当中,而自噬相关基因在支持细胞中缺失以后会因......阅读全文

“干细胞及转化研究”等6个重点专项2018年项目申报发布

  5月22日,科技部官网发布了《关于对国家重点研发计划干细胞及转化研究等6个重点专项2018年度项目申报指南征求意见的通知》,其中,“干细胞及转化研究”重点专项、“蛋白质机器与生命过程调控”重点专项、“纳米科技”重点专项 与生物医学领域相关。  关于对国家重点研发计划干细胞及转化研究等6个重点专项

2019中国生命科学领域CNS盘点:曹雪涛 颜宁 施一公上榜

  截至2019年12月23日,中国学者在Cell,Nature及Science在线发表了107篇文章(2019年的Cell ,Nature 及Science 已经全部更新),iNature团队对于这些文章做了系统的总结:  按杂志来划分:Cell 发表了31篇,Nature 发表了44篇,Scie

8篇论文,Science最新研究成果概览

  1.Science:揭示哺乳动物卵母细胞中的非中心体纺锤体组装机制  doi:10.1126/science.aat9557  哺乳动物胚胎经常异常发育,从而导致流产和遗传性疾病,如唐氏综合症。胚胎发育异常的主要原因是卵子减数分裂过程中的染色体分离错误。与体细胞和雄性生殖细胞不同的是,卵子通过一

2019年中国学者86篇Cell,Nature及Science文章汇总

  2019年上半年很快就结束了,iNature盘点了中国学者在Cell,Nature及Science发表的成果,我们发现总共有86篇(截至2019年6月24日),具体介绍如下:  4-6月发表的文章  【1】2019年6月21日,西北工业大学王文,中科院昆明动物研究所/BGI 张国捷及丹麦哥本哈根

如何选择电镜:不妨看看这75篇重要文献

这是一篇有关电子显微镜的综述,是根据75篇发表使用实验的文章归纳的。可以帮助读者找到最适合的电子显微镜。日立高新Hitachi High Technologies America为研究碳酸酐酶可通过spidroin蛋白末端功能域促进蜘蛛丝的形成,采用Hitachi的H7100 electr

研究揭示表观遗传因子CENP-A介导着丝粒功能的机制

  着丝粒是染色质上一段结构与功能高度特化的区域,在细胞分裂期指导动粒的组装,并在纺锤体的牵拉下实现姐妹染色单体的分离。CENP-A是组蛋白H3在着丝粒区的变体,是着丝粒区建立和发挥功能的关键性的表观遗传因子。CENP-A通过招募下游CCAN蛋白家族发挥其功能。CENP-N是CCAN蛋白家族中最重要

2019年中国学者发表CNS统计,谁是CNS发表之王?

  截至2019年12月31日,中国学者在Cell,Nature及Science在线发表了186篇文章,其中生命科学领域有109篇,材料学有30篇,物理学有20篇,化学有12篇,地球科学有15篇。iNature团队对于这些文章做了系统的总结:  按杂志来划分:Cell 发表了31篇,Nature 发

大跃进 | 中国学者CNS发表超过100篇生命科学领域研究成果

  截至2019年12月13日,中国学者在Cell,Nature及Science在线发表了105篇文章(2019年的Cell已经全部更新完毕,而对于Nature及Science只剩下了一期,将分别会12月19日及20日进行更新),小编对于这些文章做了系统的总结:  按杂志来划分:Cell 发表了30

胚胎干细胞研究最新进展

  胚胎干细胞,是一种具有持久更新能力的细胞,它能够或发育成几乎所有人类的各种组织或器官,故其在医学上具有非常重要的研究价值与应用前景。 人胚胎干细胞是在人胚胎发育早期——囊胚(受精后约5—7天)中未分化的细胞。囊胚含有约140个细胞,外表是一层扁平细胞,称滋养层,可发育成胚胎的支持组织如胎盘等。中

增补4.8亿!生殖健康及重大出生缺陷防控申报指南发布

   “生殖健康及重大出生缺陷防控研究”重点专项(增补任务)2018年度项目申报指南  本专项聚焦我国生殖健康领域的突出问题,重点关注生殖健康相关疾病、出生缺陷和辅助生殖技术;开展以揭示影响人类生殖、生命早期发育、妊娠结局主要因素为目的的科学研究;实现遗传缺陷性疾病筛查、阻断等一批重点技术突破;建立

蛋白质是怎样“梳妆打扮”的

  9月23日,美国伯克利大学教授迈克尔·瑞普(Michael Rape)在《自然》杂志上在线发表了一篇论文,谈到了泛素化修饰依赖的蛋白质翻译的调节决定了细胞的命运。  许多人都知道,细胞内的各种生理生化过程,主要是由蛋白质来负责完成的。一个小小的细胞之内可以含有上百万个蛋白质分子,而蛋白质分子是由

单细胞精度解析人类T淋巴细胞起源及胸腺器官发生

  T淋巴细胞是宿主适应性免疫系统中最重要的免疫细胞之一,在抵抗病原入侵、维持机体稳态以及抗肿瘤等方面起到不可或缺的作用【1,2】。胸腺是T淋巴细胞发育的必需场所【3】。胎肝或骨髓来源的胸腺定植祖细胞(thymus seeding progenitor, TSP)迁移定植到胸腺后,即为早期胸腺祖细胞

多篇文章解读影响男性生育力的诸多因素!

近年来,科学家们发现了很多影响男性生育能力的因素,比如来自中国的研究人员就发现,肥胖或会明显降低男性的生育力;而且还有研究人员发现,长期服用镇痛药布洛芬或会降低男性的生育力;本文中小编就盘点了近期多篇亮点研究成果,共同解读男性生育力关联性研究进展,分享给大家!【1】Front Physiol:胖子们

Cell背靠背 | 相分离促进紧密连接形成的机制

  细胞连接(cell junction) 是指相邻细胞之间、细胞与细胞外基质之间在质膜接触区域特化形成的连接结构。细胞连接在加强细胞间的机械联系,维持组织结构的完整性和协调不同细胞功能方面起着重要的作用。细胞连接可分为紧密连接(tight junction)、锚定连接和通讯连接三种类型。其中紧密连

Cell;背靠背 | 相分离促进紧密连接形成的机制

  细胞连接(cell junction) 是指相邻细胞之间、细胞与细胞外基质之间在质膜接触区域特化形成的连接结构。细胞连接在加强细胞间的机械联系,维持组织结构的完整性和协调不同细胞功能方面起着重要的作用。细胞连接可分为紧密连接(tight junction)、锚定连接和通讯连接三种类型。其中紧密连

Cell;背靠背 | 相分离促进紧密连接形成的机制

  细胞连接(cell junction) 是指相邻细胞之间、细胞与细胞外基质之间在质膜接触区域特化形成的连接结构。细胞连接在加强细胞间的机械联系,维持组织结构的完整性和协调不同细胞功能方面起着重要的作用。细胞连接可分为紧密连接(tight junction)、锚定连接和通讯连接三种类型。其中紧密连

着丝粒功能建立与维持关键因子的装配机制被揭示

  Developmental Cell 期刊于2014年12月31日在线发表了中国科学院生物物理研究所李国红课题组研究着丝粒区域染色质特有的细胞周期依赖性装配机制的最新成果,为长期困扰着丝粒生物学领域的CENP-A装配机制问题提供了答案。  着丝粒是一段结构与功能高度特化的染色质区域,在细胞分裂期

研究发现多能性获得中细胞器重塑的亚细胞水平事件

  7月19日,国际学术杂志《自噬》(Autophagy)在线发表了中国科学院广州生物医药与健康研究院刘兴国研究组的最新研究成果BNIP3L-dependent Mitophagy Accounts for Mitochondrial Clearance during Three Factors I

高通量测序技术实现绘制人类视网膜高精度发育细胞图谱

  人类胚胎发育从受精卵开始,经过着床前胚胎发育(胚内和胚外组织的产生),原肠胚产生(三胚层的特化)和器官发生等阶段,最终新生儿出生。人类胚胎发育从单个细胞到上万亿个细胞,历时二百八十天,整个过程的基因表达受到多种因素的精细调控,其中很多机制尚未明确。  为了解析人类胚胎发育各个阶段的基因表达调控网

Nature子刊解析自噬的秘密

  来自斯克里普斯研究所(TSRI)的科学家们发现了两种蛋白在细胞内帮助构建了特化细胞器,对维持细胞健康起极其重要的作用。这一发现为研究人员开启了大门,研究可以干扰这些细胞器形成的物质,从而促成新的癌症治疗。相关论文发表在12月2日的《自然结构与分子生物学》(Nature Structural

Cell Metabolism | 医学的第四维——生物节律

  众所周知,2017 诺贝尔生理或医学奖颁发给了三位美国遗传学家杰弗里·霍尔(Jeffrey C. Hall)、迈克尔·罗斯巴什(Michael Rosbash),以及迈克尔·杨(Michael W. Young),以表彰他们在发现果蝇生物节律分子机制方面的贡献。而在此前,医学界真正将生物节律——

Nature以封面综述形式介绍巨噬细胞

  巨噬细胞是造血系统中可塑性最强的一种细胞,所有组织中都有这种细胞,并且其也具有极强的功能多样性。4月25日Nature杂志以“A Cell For All Seasons”为标题在封面上放上了一个蓝色的巨噬细胞图片,并在刊内以综述的形式探讨了巨噬细胞为哺乳动物生理及病理生理适应性所做的贡

Nature以封面综述形式介绍巨噬细胞

  巨噬细胞是造血系统中可塑性最强的一种细胞,所有组织中都有这种细胞,并且其也具有极强的功能多样性。4月25日Nature杂志以“A Cell For All Seasons”为标题在封面上放上了一个蓝色的巨噬细胞图片,并在刊内以综述的形式探讨了巨噬细胞为哺乳动物生理及病理生理适应性所做的贡

“巨噬细胞”的前世今生

边志磊博士后(左)、兰雨研究员(中)和刘兵研究员观察细胞并讨论。  巨噬细胞是人体免疫系统的重要组成细胞,它可以吞噬细胞残片、垃圾,消化病原体,发挥“清道夫”的作用,还能像“哨兵”一样提醒其它免疫细胞“有敌入侵,准备战斗”,在免疫细胞与病原体激战时,它也常常冲在最前面。  随着研究深入,科学家们发现

解析人源脂质合成关键蛋白SEIPIN寡聚体结构

  肥胖已经是这个社会越来越多人关注的话题。造成肥胖的原因有很多,比如基因缺陷、内分泌失常、缺乏运动、饮食不规律等等。肥胖也会增加很多疾病的患病概率,比如心血管疾病、二型糖尿病、某些癌症等。最主要的是,肥胖可能给很多人的生活带来不便,影响生活质量。  总的来说,肥胖的主要原因还是体内脂肪的积累。生命

势不可挡!北京大学高宁团队连续发表Cell及Nature

  2019年3月21日,北京大学高宁与中国医学科学院病原生物学研究所金奇共同通讯在Cell在线发表题为“Cryo-EM Structure and Assembly of an Extracellular Contractile Injection System”的研究论文,该研究报告了来自P.

间充质谱系细胞分离和功能鉴定发表《Cell》文章

  宾夕法尼亚肺生物学中心主任、细胞和发育生物学教授Edward E. Morrisey说:“现在的治疗靶点都是‘钝锤’,对诸如特发性肺纤维化(IPF)等疾病根本不起作用,这类疾病的基本原理还没搞清楚,谈何促进修复和再生医学。开发精准治疗方法的前提是透彻了解特化细胞和细胞通路。”  IPF是一种慢性

早衰研究新发现:松弛DNA的会导致衰老

  werner综合征是一种罕见疾病,患者会表现出类似早衰的症状——通常在20多岁就头发花白,30几岁出现白内障和骨质疏松症,60岁前死亡。  如今,研究人员首次得到了携带能够导致此类疾病症状的基因缺陷的多功能干细胞。他们的分析表明,缠绕松弛的DNA引发了werner综合征所表现的身体机能的快速下降

感觉器与皮肤解剖观察实验

1.观察眼球标本及切片,了解眼球的大体解剖结构和显微结构。2.观察眼副器-眼睑、结膜、泪器和眼肌。3.观察耳标本及内耳切片,了解耳的大体解剖结构和内耳的显微结构。实验材料猪眼牛眼球猴眼球解剖标本眼球模型泪器解剖标本颞骨剖开标本内耳标本内耳解剖模型眼球的水平切片耳蜗的纵切片人头皮的垂直切片视网膜视细胞

9月29日世界心脏日 心脏健康领域的重要研究成果!

  2019年9月29日是第19个世界心脏日,在世界心脏日到来之际,小编整理了近期科学家们在心脏健康领域取得的重要研究成果,分享给大家!  【1】JBC:心脏中的碳水化合物有助于调节血压  doi:10.1074/jbc.RA119.008102  一项新的研究表明,一种特殊的碳水化合物在调节人体血