Antpedia LOGO WIKI资讯

中国化学会第22届全国色谱会大腕共享色谱分析新技术

分析测试百科网讯 2019年4月21日,中国化学会第22届全国色谱学术报告会及仪器展览会在上海光大会展中心国际大酒店盛大召开(相关链接:第22届全国色谱会在沪召开 5位专家获中国色谱贡献奖)。大会开幕式后,南京大学陈洪渊院士、中国科学院生态环境研究中心江桂斌院士、复旦大学张祥民教授、国家纳米科学中心赵宇亮院士、大连理工大学彭孝军院士、深圳大学副校长张学记教授分别带来精彩的大会报告。分析测试百科网作为本次会议的支持媒体,全程跟踪报道。中国化学会第22届全国色谱学术报告会及仪器展览会南京大学 陈洪渊院士 南京大学陈洪渊院士带来题为《微纳流控生命分析最新进展:从前沿到应用》的精彩大会报告,涵盖了微纳流控生命分析历史(微纳流控分析基本概念和微纳流控分析起源于色谱微型化),微纳流控生命分析中的“分”(生命分析需要“分而析之”,分离-从宏观向微观发展,微流控平台中的分离思想)等。 分析化学是发展和应用各种方法、仪器和策略获得有关物质......阅读全文

精准医疗的微流控技术(二)

① 良好的加工性不同的加工方法对聚合物的加工性有不同的要求。 由于微通道的构型越来越趋于复杂,高深宽比的微通道的优点很多,所以聚合物材料应具有良好的加工性。② 良好的电绝缘性和热性能由于微流控芯片中的液体驱动经常采用电驱动方式,而且芯片经常被用于进行电泳分离,加高压电场会产生热量,高温或局部高温都会

精准医疗的微流控技术(一)

临床医学全面走向个性化医疗诊疗是当今医学发展的一大方向,精准的体外诊断技术是正确诊疗的基本保证。而体外诊断基本主要是基于体液(血液,尿液,唾液)的分析,对于这些体液的操控, 自动化肯定是个大趋势。那么对于液体的自动化操控,正是我们微流控要干的事情。所以,体外诊断(IVD)里除去试剂的研发,后续的自动

精准医疗的微流控技术(三)

(4)注塑法注塑法的工艺是通过光刻和刻蚀技术在硅片上刻蚀出电泳芯片阴模,用此阴模进行24h左右的电铸,得到0.5 cm厚的镍合金模,再将镍合金模加厚,精心加工制成金属注塑模具,将此模具安装在注塑机上批量生产聚合物微流控芯片基片。在注塑法制作过程中,模具制作复杂,技术要求高,周期长,是整个工艺过程中的

变革生物医疗:微流控培养肿瘤

  微流控芯片是通过对微米级通道网络内流体的驱动和控制,把生物、化学、医学分析过程的样品制备、反应、分离、检测等基本操作单元集成到一块厘米尺度的芯片上,最终实现“芯片实验室”。  林炳承团队利用微流控芯片技术先后构建了肿瘤细胞三维共培养模型、肿瘤多器官转移的模型等,实现了在生物体外测试研发中肿瘤药物

微流控技术将变革生物医疗领域

  以“微流控技术及生物医疗应用发展趋势”为主题的上海东方科技论坛日前在沪举行。包括中科院院士王曦等来自科研、高校、临床医学和企业界的专家学者认为,以微流控为代表的生物芯片技术开始进入产业化的关键时期,已成为全球生物技术和医疗产品多样化创新的重要方向,或将迎来生物医疗领域的产业大变革。我国

中国化学会第22届全国色谱会大腕共享色谱分析新技术

  分析测试百科网讯 2019年4月21日,中国化学会第22届全国色谱学术报告会及仪器展览会在上海光大会展中心国际大酒店盛大召开(相关链接:第22届全国色谱会在沪召开 5位专家获中国色谱贡献奖)。大会开幕式后,南京大学陈洪渊院士、中国科学院生态环境研究中心江桂斌院士、复旦大学张祥民教授、国家纳米科学

微纳流控发展及展望

  微流控技术,称它是“颠覆性技术”丝毫不过。  自20世纪90年代以来,微流控芯片技术的出现极大促进了微型化操作和分析方法的研究进展。尽管微流控技术只经历了短短30年的发展,其已经从最初单纯的毛细管电泳的微型化技术,演变成为一种涵盖了从基础生物技术到生物医学诊断等各个领域的富有活力的工具性方法平台

高通量纳电喷雾-质谱分析微流控液滴样品

  液滴微流控技术可以在互不相溶的载体相中产生fL-µL大小的样品液滴,进行高通量离散样品操作。微液滴具备样品消耗量小,传热快,混合迅速等优点,适用于于筛选、生物鉴定等多个领域。对于微液滴内容物检测,光学方法因易于偶联目前最为常用,但该方法依赖具有光学响应的标记或者反应。质谱由于具备混合物定性、定量

微流控构筑微纳功能材料及其生物医学应用

  近日,中国科学院深圳先进技术研究院医工所纳米调控研究中心副研究员杜学敏(通讯作者)及其团队成员赵启龙(第一作者)、崔欢庆(共同第一作者)和王运龙在材料领域期刊Small上发表微流控构筑微纳功能材料及其生物医学应用综述,全面总结了基于微流控技术构建形态、形貌、结构、组成乃至性能精准可调的微纳功能材

医疗检测的革命前锋——微流控

  作为一种精确控制和操控微尺度流体的技术,微流控(microfluidics)以在微纳米尺度空间中对流体进行操控为主要特征,具有将生物、化学等实验室的基本功能诸如样品制备、反应、分离和检测等缩微到一个几平方厘米芯片上的能力,其基本特征和最大优势在于多种单元技术在整体可控的微小平台上灵活组合、规模集