耐热木聚糖酶催化域结构解析及机理研究获进展

近日,中科院天津工业生物技术研究所与东莞泛亚太生技公司合作在耐热木聚糖酶的研究方面取得了突破性进展,得到了来源嗜热菌(Thermoanaerobacterium saccharolyticumJW/SL-YS485)木聚糖酶结构域的酶蛋白(TsXylA)结构以及与底物(木二糖到木四糖)的复合体结构。 TsXylA的最适温度为75℃,最适pH为6.5,具有良好的耐热性,在75℃保温1小时,酶活性无下降。该酶属于GH10家族,具有典型的(b/a)8构型。通过解析突变体E146A和E251A与底物(木二糖、木三糖和木四糖)的复合体结构,表明该结构表面有一个敞开的凹槽,可以容纳底物多糖。E146和E251位于凹槽底部,是保守的催化结合位点。 该研究一方面为探索木聚糖酶的催化结构域提供了理论基础,另一方面为该酶的定向改造提供了理论依据。 该研究成果已经被Proteins: Structure, Function,......阅读全文

催化酶的结构基础

参与翻译生化反应的有多种酶,但其核心生化反应主要由两类酶参与:催化腺苷化反应和tRNA装载的氨酰-tRNA合成酶、催化肽键合成的核糖体核酶。下面将进一步探讨这两种酶的结构生物学基础,以及它们确保反应准确发生的校正机制。氨酰-tRNA合成酶氨酰-tRNA合成酶有四个结构域和三个活性位点。由于每种tRN

蛋白酶的催化过程

1. 称取胰蛋白酶:按胰蛋白酶液浓度为 0.25 %,用电子天平准确称取粉剂溶入小烧杯中的双蒸水(若用双蒸水需要调 PH 到 7.2 左右)或 PBS ( D-hanks )液中。搅拌混匀,置于 4℃ 内过夜。2. 用注射滤器抽滤消毒:配好的胰酶溶液要在超净台内用注射滤器( 0.22 微米微孔滤膜)

耐热木聚糖酶催化域结构解析及机理研究获进展

  近日,中科院天津工业生物技术研究所与东莞泛亚太生技公司合作在耐热木聚糖酶的研究方面取得了突破性进展,得到了来源嗜热菌(Thermoanaerobacterium saccharolyticumJW/SL-YS485)木聚糖酶结构域的酶蛋白(TsXylA)结构以及与底物(木二糖到木四糖)的复合

转化酶的定义和历史

糖苷酶之一。催化蔗糖水解成为果糖和葡萄糖的一种酶,广泛存在于动植物和微生物中,主要从酵母中得到。自1860 年Bertholet 从啤酒酵母Sacchacomyces Cerevisiae 中发现了蔗糖酶以来, 它已被广泛地进行了研究。蔗糖酶(β -D-呋喃果糖苷果糖水解酶,fructofurano

关于蔗糖酶的简介

  糖苷酶之一。催化蔗糖水解成为果糖和葡萄糖的一种酶,广泛存在于动植物和微生物中,主要从酵母中得到。  自1860 年Bertholet 从啤酒酵母Sacchacomyces Cerevisiae 中发现了蔗糖酶以来, 它已被广泛地进行了研究。蔗糖酶(β -D-呋喃果糖苷果糖水解酶,fructofu

蔗糖酶的简介和研究历史

糖苷酶之一。催化蔗糖水解成为果糖和葡萄糖的一种酶,广泛存在于动植物和微生物中,主要从酵母中得到。自1860 年Bertholet 从啤酒酵母Sacchacomyces Cerevisiae 中发现了蔗糖酶以来, 它已被广泛地进行了研究。蔗糖酶(β -D-呋喃果糖苷果糖水解酶,fructofurano

木瓜蛋白酶的催化机制

木瓜蛋白酶的剪切肽键的机制包括:在His-159作用下Cys-25去质子化,而Asn-158能够帮助His-159的咪唑环的摆放,使得去质子化可以发生;然后Cys-25亲核攻击肽主链上的羰基碳,并与之共价连接形成酰基-酶中间体;接着酶与一个水分子作用,发生去酰基化,并释放肽链的羰基末端。

无花果蛋白酶的催化机制

无花果蛋白酶与底物反应 3 个步骤:快速形成松散的酶底物复合物;酶活性中心的-SH 基被底物的羰基酰化;酰化酶的分解,生成酶与产物。

​木瓜蛋白酶的催化机制

木瓜蛋白酶的剪切肽键的机制包括:在His-159作用下Cys-25去质子化,而Asn-158能够帮助His-159的咪唑环的摆放,使得去质子化可以发生;然后Cys-25亲核攻击肽主链上的羰基碳,并与之共价连接形成酰基-酶中间体;接着酶与一个水分子作用,发生去酰基化,并释放肽链的羰基末端。

苏氨酸蛋白酶的催化机制

苏氨酸蛋白酶使用其N端苏氨酸的仲醇作为亲核试剂进行催化。苏氨酸必须是N末端,因为相同残基的末端胺通过极化有序水而起到一般碱的作用,从而使醇去质子化以增加其作为亲核试剂的反应性。催化分两步进行:首先亲核试剂攻击底物形成共价酰基酶中间体,释放xxx个产物。其次,中间体被水水解以再生游离酶并释放第二产物。

木瓜蛋白酶的催化机制

木瓜蛋白酶的剪切肽键的机制包括:在His-159作用下Cys-25去质子化,而Asn-158能够帮助His-159的咪唑环的摆放,使得去质子化可以发生;然后Cys-25亲核攻击肽主链上的羰基碳,并与之共价连接形成酰基-酶中间体;接着酶与一个水分子作用,发生去酰基化,并释放肽链的羰基末端。

丝氨酸蛋白酶的催化机制

丝氨酸蛋白酶催化机制的主要参与者是催化三联体。三联体位于酶的活性位点,在那里发生催化作用,并保存在丝氨酸蛋白酶的所有超家族中。三联体是由三个氨基酸组成的协调结构:His57、Ser195(因此得名“丝氨酸蛋白酶”)和Asp102.这三种关键氨基酸均在蛋白酶的切割能力中发挥重要作用。虽然三联体的氨基酸

简述木瓜蛋白酶的催化机制

  木瓜蛋白酶的剪切肽键的机制包括:在His-159作用下Cys-25去质子化,而Asn-158能够帮助His-159的咪唑环的摆放,使得去质子化可以发生;然后Cys-25亲核攻击肽主链上的羰基碳,并与之共价连接形成酰基-酶中间体;接着酶与一个水分子作用,发生去酰基化,并释放肽链的羰基末端。

低氧激活的蛋白前药催化纳米酶

临床上应用的蛋白质药物大多是在细胞外发挥功能,但是在在细胞质中发挥其生物活性理论上具有更好的效果,但目前却鲜有实现。其主要的限制因素包括:缺乏将蛋白质运送到病变部位组织的高效的细胞内化运载工具、介导跨膜转运进入靶细胞、溶酶体截留、在细胞质中释放具有生物活性的蛋白质。细胞内蛋白治疗的另一个关键问题是如

半胱氨酸蛋白酶催化机制介绍

半胱氨酸蛋白酶催化肽键水解的反应机制的xxx步是通过具有碱性侧链的相邻氨基酸(通常是组氨酸残基)使酶活性位点中的硫醇去质子化。下一步是去质子化半胱氨酸的阴离子硫对底物羰基碳的亲核攻击。在这一步中,底物的一个片段被释放出一个胺端,即蛋白酶中的组氨酸残基恢复到其去质子化形式,并形成将底物的新羧基末端连接

弹性蛋白酶的结构

弹性硬蛋白是一种由丙氨酸、亮氨酸、异亮氨酸等非极性氨基酸残基交联而成的网状结构,它可以耐受酸碱处理,并能抵抗一般蛋白酶的消化。

尿海藻糖酶的酶活性的测定

1. 原理利用海藻糖酶水解一分子海藻糖生成两分子葡萄糖,然后测定生成的葡萄糖浓度作为海藻糖酶的活性浓度。2. 步骤将尿液标本0.5mL通过5mmol/LpH为6.2的磷酸盐缓冲液平衡的SephadexG-25柱,以除去内源性葡萄糖。收集含蛋白的部分,将体积调整到1.5ml。将洗脱下来的标本0.9mI

尿海藻糖酶的酶含量的测定

1. 原理利用抗海藻糖酶单克隆抗体的夹心ELISA方法检测酶蛋白的含量。2. 步骤国外报导用重组海藻糖酶和人工合成的海藻糖酶多肽片段制备出抗人海藻糖酶的单克隆抗体,然后经过包被、封闭等步骤,用夹心ELISA方法测定出酶蛋白的浓度。3. 结果IshiharaR等用ELISA法测定健康组尿海藻糖酶蛋白的

简述钙蛋白酶的结构

  钙蛋白酶(EC3,4,22,17)是细胞内依钙中性半胱氨酸内肽酶。在体内,通过Ca2+激活及自溶而表现出蛋白水解酶的活性,并通过钙蛋白酶抑制活化的钙蛋白酶活性。钙蛋白酶系统的主要作用对象是细胞骨架蛋白、蛋白激酶和磷酸酶以及激素受体。广泛存在的钙蛋白酶有钙蛋白酶1(u-calpain)、钙蛋白酶2

钙蛋白酶的基本结构

钙蛋白酶(EC3,4,22,17)是细胞内依钙中性半胱氨酸内肽酶。在体内,通过Ca2+激活及自溶而表现出蛋白水解酶的活性,并通过钙蛋白酶抑制活化的钙蛋白酶活性。钙蛋白酶系统的主要作用对象是细胞骨架蛋白、蛋白激酶和磷酸酶以及激素受体。广泛存在的钙蛋白酶有钙蛋白酶1(u-calpain)、钙蛋白酶2(m

关于髓过氧化物酶缺乏症的病理生理介绍

  正常人髓过氧化物酶蛋白有折叠,并有铁结合位点。铁结合位点结构的保持与位于与活性位点相关的3D结构中的第349位的丝氨酸有关,这个位点的丝氨酸与酶蛋白结构的稳定性聚合和髓过氧化物酶的催化性质也具重要性。Fusetti等测定了人酶蛋白(残基118~452)的结晶结构,发现此酶与组成催化和四聚体化区的

髓过氧化物酶缺乏症的病理生理

  正常人髓过氧化物酶蛋白有折叠,并有铁结合位点。铁结合位点结构的保持与位于与活性位点相关的3D结构中的第349位的丝氨酸有关,这个位点的丝氨酸与酶蛋白结构的稳定性聚合和髓过氧化物酶的催化性质也具重要性。Fusetti等测定了人酶蛋白(残基118~452)的结晶结构,发现此酶与组成催化和四聚体化区的

髓过氧化物酶的的病理生理

正常人髓过氧化物酶蛋白有折叠,并有铁结合位点。铁结合位点结构的保持与位于与活性位点相关的3D结构中的第349位的丝氨酸有关,这个位点的丝氨酸与酶蛋白结构的稳定性聚合和髓过氧化物酶的催化性质也具重要性。Fusetti等测定了人酶蛋白(残基118~452)的结晶结构,发现此酶与组成催化和四聚体化区的每个

饲料所在多聚半乳糖醛酸酶催化机制方面取得重要进展

   近日,从中国农业科学院饲料研究所获悉,由姚斌研究员领衔的饲用酶工程创新团队在多聚半乳糖醛酸酶催化机制方面取得重要进展。研究基于嗜热真菌(菌株名Achaetomium sp. Xz8)来源的高比活内切多聚半乳糖醛酸酶晶体结构,以活性T3环状连接区(loop区)为研究靶点,系统研究环状连接区上底物

纤维素酶的结构

大多数真菌纤维素酶具有双结构域结构,具有一个催化结构域和一个纤维素结合结构域,它们通过柔性接头连接。这种结构适用于在不溶性底物上工作,它允许酶以类似毛毛虫的方式在表面上二维扩散。然而,也有缺乏纤维素结合域的纤维素酶(主要是内切葡聚糖酶)。底物的结合和催化作用都依赖于酶的三维结构,这是蛋白质折叠水平的

内切葡聚糖酶的结构和特性

内切葡聚糖酶是纤维素酶系的一种。在纤维素酶系中,内切葡聚糖酶(endo-1,4-β-D-glucanohydrolase, EC 3.2.1.4)是主要成分,它包含多种同工酶,归结在以前的Cx分类中,可以将可溶性纤维素水解成还原性的寡糖。不同来源、不同类型的内切葡聚糖酶的分子量、等电点、酶学特性及分

酶催化的概念

酶催化可以看作是介于均相与非均相催化反应之间的一种催化反应。 既可以看成是反应物与酶形成了中间化合物,也可以看成是在酶的表面上首先吸附了反应物,然后再进行反应。

酶的催化原理

催化作用酶是一类生物催化剂,它们支配着生物的新陈代谢、营养和能量转换等许多催化过程,与生命过程关系密切的反应大多是酶催化反应。酶的这些性质使细胞内错综复杂的物质代谢过程能有条不紊地进行,使物质代谢与正常的生理机能互相适应。若因遗传缺陷造成某个酶缺损,或其它原因造成酶的活性减弱,均可导致该酶催化的反应

蔗糖酶的存在形式

该酶以两种形式存在于酵母细胞膜的外侧和内侧, 在细胞膜外细胞壁中的称之为外蔗糖酶(external yeast invertase),其活力占蔗糖酶活力的大部分,是含有50% ~70(质量分数) 糖成分的糖蛋白;在细胞膜内侧细胞质中的称之为内蔗糖酶(internal yeast invertase)

壳多糖酶的基本信息

中文名称壳多糖酶英文名称chitinase定  义编号:EC 3.2.1.14。催化壳多糖完全水解所需的双酶体系中的一种酶。催化水解N-乙酰氨基葡糖寡聚体,尤其是四聚体或四聚体以上的多聚体中的β-1,4-糖苷键,生成壳二糖。应用学科生物化学与分子生物学(一级学科),酶(二级学科)