人类X染色质的观察

一、 实验目的 掌握观察与鉴别X染色质的简易方法,识别其形态特征及所在部位,为进一步研究人体染色体的畸变与疾病提供参考条件。 二、 实验原理 1、发现 1949年,加拿大学者Barr等人在雌猫的神经元细胞核中首次发现一种染色较深的浓缩小体,而在雄猫则没有这种结构。进一步研究发现,除猫外,其他雌性哺乳动物(包括人类)也同样有这种显示性别差异的结构。而且不仅是神经元细胞,在其他细胞的间期核中也可以见到这一结构。称之为巴氏小体,也称为X染色质。 正常女性的间期细胞核中紧贴核膜内缘有一个染色较深,大小约为1微米的三角形或椭圆形小体,即X染色质。间期核内X染色质的数目总是比X染色体的数目少1。正常女性有两条X染色体,因此只有一个X染色质;若有三条X染色体,就会有两个X染色质,余此类推。正常男性只有一条X染色体,所以没有X染色质。 2、莱昂假说 为什么正常男女之间的X染色......阅读全文

x染色质的相关叙述

  X染色质,是上皮细胞等的间期核,用碱性染料染色后,在人的女性细胞靠近核膜处可观察到有一个长圆形的小体(长径稍大于1微米),过去叫做染色质,或称为巴尔氏小体。但后来发现了Y染色质,为避免混同,现一律改称为X染色质。 染色质与染色体是在细胞周期的不同时间所呈现形态结构不同的同一物质。  1、正常值 

人类X染色质的观察

实验概要掌握观察与鉴别X染色质的简易方法,识别其形态特征及所在部位,为进一步研究人体染色体的畸变与疾病提供参考条件。实验原理1、X染色质的发现1949年,加拿大学者Barr等人在猫的神经元细胞核中首次在雌猫体内发现一种染色较深的浓缩小体,而在雄猫中则没有这种结构。进一步研究发现,除猫外,其他雌性哺乳

关于x染色质的简介

  x染色质曾称巴氏小体或x小体,为紧贴细胞核膜内面的团块状结构,直径约1um,染色程度较其他染色质深。其形态不一,常呈三角、半圆、平凸或球形。利用放射自显影技术的研究发现,女性的两条x染色体中有一条DNA复制延迟,称迟复制x。迟复制的x染色体在间期时表现为x染色质。当细胞内有一条以上x染色体时,在

人类X染色质的观察

一、 实验目的 掌握观察与鉴别X染色质的简易方法,识别其形态特征及所在部位,为进一步研究人体染色体的畸变与疾病提供参考条件。 二、 实验原理 1、发现 1949年,加拿大学者Barr等人在雌猫的神经元细胞核中首次发现一种染色较深的浓缩小体,而在雄猫则没有这种结构。进一步研究发现,除猫外,其他雌性哺乳

DNA的化学检测项目介绍X染色质

X染色质介绍:  染色质与染色体是在细胞周期的不同时间所呈现形态结构不同的同一物质。X染色质正常值:  在妊娠16周前后,从孕妇腹壁外采取胎儿的羊水,用低速离心,使羊水中漂浮的胎儿脱落细胞沉淀,取沉淀物。镜下检查可数细胞100个,算出X小体的百分率。男胎的X小体占0%-2%,小于5%可判为男胎。X染

临床化学检查方法介绍X染色质介绍

X染色质介绍:  染色质与染色体是在细胞周期的不同时间所呈现形态结构不同的同一物质。X染色质正常值:  在妊娠16周前后,从孕妇腹壁外采取胎儿的羊水,用低速离心,使羊水中漂浮的胎儿脱落细胞沉淀,取沉淀物。镜下检查可数细胞100个,算出X小体的百分率。男胎的X小体占0%-2%,小于5%可判为男胎。X染

碳酸复红(Basic-Fuchsin)显示X染色质法

实验方法原理在间期细胞核中,女性X染色质和男性Y染色质均可用特殊染色法显示出来。女性的两个X染色体中的一个,在间期时的染色质呈异固缩(Heteropyconosis),呈深染的小体称Barr氏体。Barr氏体位于间期细胞核内面,呈三角形或半月形小体,易为碳酸复红或硫堇等染料着色。正常女性Barr氏体

交联染色质免疫共沉淀(XChIP)实验设计

ChIP是一种强大的确定蛋白或者组蛋白修饰在基因组上定位的实验方法。染色质被分离出来后采用抗体与抗原的结合来判定目的蛋白是否结合在特定的DNA序列上或者判定目的蛋白结合位点在全基因组范围的分布(微阵列或DNA序列)。这种方法具有空间性与时效性。该实验设计为如何在细胞中进行ChIP实验提供了详细的步骤

人类染色体的X染色质的相关内容

  1949年巴氏(Barr)等人在雌猫的神经元细胞核中发现一种浓缩小体,在雄猫中则见不到这一结构。以后将这一小体称为Barr小体或性染色质。进一步研究表明:①其它哺乳动物(包括人类)也同样有这种显示性别差异的结构;②性染色质不只存在于神经元细胞中,在其它细胞中也可见到。例如,人类女性口腔粘膜细胞核

异染色质和常染色质的结构差异

染色质可以分为两种类群,异染色质和常染色质。最开始,这两种形式是通过其在染色之后的颜色深浅区分的,常染色质一般着色较浅,而异染色质着色很深,表明其紧密聚集。异染色质通常集中在细胞核的边缘区域。然而,不同于这种早期的二分法,最近的研究表明在动物和植物体内都拥有不止这两种染色体结构,可能会有四到五种,区

常染色质与异染色质的功能差异

常染色质区域的基因可以被转录为信使RNA。常染色质区域非折叠的结构允许基因调控蛋白和RNA聚合酶与其上的DNA序列结合,从而开启转录过程。在转录过程中,并非所有的常染色质都会被转录,但基本上非转录的部分会折叠为异染色质以保护暂时其上不用的基因。因此细胞的活性与细胞核中的常染色质数目有直接关系。常染色

异染色质的主要类型兼性异染色质

在一定时期的特种细胞的细胞核内, 原来的常染色质可转变成兼性异染色质。如雄性个体的细胞含有一个瘦小的Y染色体和一个大的X染色体, 由于X和Y染色体上很少有共同的基因, 对于雄性来说, X染色体上的基因就只有一个拷贝。虽然雌性细胞有两条X染色体, 也只有一条具有转录活性, 另外一条X染色体像异染色质一

异染色质的主要类型组成性异染色质

组成性异染色质,指除S期以外在整个细胞周期均处于聚缩状态, DNA包装比基本不变,可构成多个染色中心。

染色质的定义

  染色体在细胞周期的间期时DNA的螺旋结构松散,呈网状或斑块状不定形物,即染色质。以浓集状态存在者,称异染色质(1~eterochromatin);以分散状态存在者,称常染色质(euchromatin)。常染色质染色较浅且均匀,异染色质染色深。性染色质与性染色体(x染色体和Y染色体)有关,称x染色

性染色质检测

实验方法原理 在间期细胞核中,女性X染色质和男性Y染色质均可用特殊染色法显示出来。女性的两个X染色体中的一个,在间期时的染色质呈异固缩(Heteropyconosis),呈深染的小体称Barr氏体。Barr氏体位于间期细胞核内面,呈三角形或半月形小体,易为碳酸复红或硫堇等染料着色。正常女性Barr氏

染色质的分类

间期染色质按其形态特征、活性状态和染色性能区分为两种类型:常染色质和异染色质。按功能状态的不同可将染色质分为活性染色质和非活性染色质。

异染色质的定义

异染色质(heterochromatin)是指在细胞周期中具有固缩特性的染色体。

异染色质的定义

  异染色质分为结构异染色质和功能异染色质两种类型。结构异染色质是指各类细胞在整个细胞周期内处于凝集状态的染色质,多定位于着丝粒区、端粒区,含有大量高度重复顺序的脱氧核糖核酸(DNA),称为卫星DNA(satellite DNA)。功能异染色质只在一定细胞类型或在生物一定发育阶段凝集,如雌性哺乳动物

概述染色质的成分

  通过分离胸腺、肝或其他组织细胞的核,用去垢剂处理后再离心收集染色质进行生化分析,确定染色质的主要成分是DNA和组蛋白,还有非组蛋白及少量RNA。大鼠肝细胞染色质常被当作染色质成分分析模型,其中组蛋白与DNA含量之比近于1:1,非组蛋白与DNA之比是0.6:1,RNA与DNA之比为0.1:1。DN

异染色质的定义

异染色质分为结构异染色质和功能异染色质两种类型。结构异染色质是指各类细胞在整个细胞周期内处于凝集状态的染色质,多定位于着丝粒区、端粒区,含有大量高度重复顺序的脱氧核糖核酸(DNA),称为卫星DNA(satellite DNA)。功能异染色质只在一定细胞类型或在生物一定发育阶段凝集,如雌性哺乳动物含一

常染色质的定义

常染色质是染色质(由DNA、RNA和蛋白质组成)的一种松散聚集的形式,这种聚集方式在基因中大量存在,并且相应的片段通常处于活跃的转录当中(但并非必要,即常染色质部分不一定都是高表达的序列)。常染色质构成了细胞核基因组中表达最活跃的一部分。

染色质重组的意义

染色质重组过程中,核小体滑动可能是一种重要机制,它不改变核小体结构,但改变核小体与DNA 的结合位置。实验证明,这种滑动能被核小体上游的“十字形”结构阻断。但“滑动”机制并不能解释所有实验现象。人们推测,在重组过程中,还有其他机制如核小体可能与DNA 分离,然后核小体经过重排,结构变化后,与DNA

异染色质的定义

  异染色质分为结构异染色质和功能异染色质两种类型。结构异染色质是指各类细胞在整个细胞周期内处于凝集状态的染色质,多定位于着丝粒区、端粒区,含有大量高度重复顺序的脱氧核糖核酸(DNA),称为卫星DNA(satellite DNA)。功能异染色质只在一定细胞类型或在生物一定发育阶段凝集,如雌性哺乳动物

什么是常染色质?

  常染色质是染色质(由DNA、RNA和蛋白质组成)的一种松散聚集的形式,这种聚集方式在基因中大量存在,并且相应的片段通常处于活跃的转录当中(但并非必要,即常染色质部分不一定都是高表达的序列)。常染色质构成了细胞核基因组中表达最活跃的一部分。  人类基因组中92%为常染色质。

异染色质的功能

  关于异染色质的功能,还未深入了解。但以下的几点是明显的。  1结构型异染色质可以加强着丝点区,使着丝粒稳定,以确保染色体分离。  2可以隔离和保护重要基因(例如NOR区的18S和28S基因),防止或减少基因突变和交换。  3促进物种分化,同源染色体可通过其异染色质区的重复序列在减数分裂时配对,这

异染色质的功能

  关于异染色质的功能,还未深入了解。但以下的几点是明显的。  1结构型异染色质可以加强着丝点区,使着丝粒稳定,以确保染色体分离。  2可以隔离和保护重要基因(例如NOR区的18S和28S基因),防止或减少基因突变和交换。  3促进物种分化,同源染色体可通过其异染色质区的重复序列在减数分裂时配对,这

染色质重塑的概念

染色质重塑chromatin remodeling :基因表达的复制和重组等过程中,染色质的包装状态、核小体中组蛋白以及对应DNA分子会发生改变的分子机理。

常染色质的功能

常染色质区域的基因可以被转录为信使RNA。常染色质区域非折叠的结构允许基因调控蛋白和RNA聚合酶与其上的DNA序列结合,从而开启转录过程。在转录过程中,并非所有的常染色质都会被转录,但基本上非转录的部分会折叠为异染色质以保护暂时其上不用的基因。因此细胞的活性与细胞核中的常染色质数目有直接关系。常染色

异染色质的区分

  常染色质易被碱性染料染成浅色,或对福尔根反应呈弱阳性。异染色质易被碱性染料染成深色,或对福尔根反应呈阳性。  [1]  异染色质着色较深,常位于细胞核的边缘和核仁周围,构成核仁相随染色质的一部分。可以分为结构性异染色质(constitutive heterochromatin)和兼性异染色质(f

染色质的发现过程

1879年,W. Flemming提出了染色质(chromatin)这一术语,用以描述细胞核中能被碱性染料强烈着色的物质。1888年,Waldeyer正式提出染色体的命名。经过一个多世纪的研究,人们认识到,染色质和染色体是在细胞周期不同阶段可以相互转变的形态结构。