Antpedia LOGO WIKI资讯

美开发皮下植入式碳纳米管传感器测血糖无需采血

据物理学家组织网近日报道,美国麻省理工学院的研究人员开发出一种碳纳米管传感器,被植入皮肤下后,可全年实时监测活体动物体内的分子活动,如炎症反应即产生一氧化氮(NO)的过程,或监测血糖或胰岛素水平,而无需再像传统方式那样采取血样。该研究结果发表在《自然·纳米技术》上。 一氧化氮是活细胞中最重要的信号分子,具有在大脑内运送信息及调整免疫系统的功能。在许多癌细胞中,其水平是波动的,但很少有人知道一氧化氮在健康细胞和癌细胞内的表现方式。麻省理工学院化学工程教授迈克尔·斯特拉诺说:“一氧化氮在癌症演进过程中扮演着矛盾的角色,为了更好地了解它,我们需要新的工具。该传感器提供了一个用于体内实时测量一氧化氮及其他潜在分子活动的新手段。” 在这项新研究中,研究人员修改了碳纳米管,创建了两个不同类型的传感器:一个可以被注射到血液中用于短期监测;另一个可嵌入到凝胶中,以便植入肌肤用于长期监测。 就短期监测而言,为了使纳......阅读全文

水果保鲜新科技:碳纳米管传感器

  来自麻省理工学院的化学教授TimothySwager和他的团队利用改进过的碳纳米管研制出了一种新型传感器,这种造价只有0.25美元的传感器可以检测出果实在成熟过程中所释放出的一种化学成分——乙烯,将这种碳纳米管传感器放进装有果蔬的装运箱中,通过检测装运箱中的乙烯浓度,工作人员清楚的知晓箱中果蔬的

德科学家使用碳纳米管研发气敏传感器

  德国慕尼黑工业大学的研究人员正在研发一种低成本、可用于大规模工业生产的气敏传感器,可安装到食品包装袋内部用于评估食品的新鲜程度,或者应用于空气质量无线监测中。这种元件使用碳纳米管制造,就像墨水一样被喷射到塑料包装或其它基板上。   由慕尼黑工业大学研究人员研发的这种碳纳米管气敏传感器融合了多种

新纳米管传感器能检测到单个爆炸物分子

  麻省理工大学研究人员研发出一种超级灵敏的新型探测仪,将检测爆炸物的能力推进到一个分子的最后极限,比目前机场用的爆炸检测仪灵敏很多。相关论文发表在本周《美国国家科学院院刊》网站上。  该技术利用了蜜蜂毒液中一种称为bombolitins的蛋白质片段。研究人员将这种蛋白质片断涂在碳纳米管上后发现,这

美开发皮下植入式碳纳米管传感器 测血糖无需采血

  据物理学家组织网近日报道,美国麻省理工学院的研究人员开发出一种碳纳米管传感器,被植入皮肤下后,可全年实时监测活体动物体内的分子活动,如炎症反应即产生一氧化氮(NO)的过程,或监测血糖或胰岛素水平,而无需再像传统方式那样采取血样。该研究结果发表在《自然·纳米技术》上。   一氧化氮是活

面向人工视觉的碳纳米管光电传感器阵列研究获进展

原文地址:http://www.cas.cn/syky/202103/t20210319_4781634.shtml   视觉系统对生物体的生存和竞争必不可少。在视觉信息处理过程中,在大脑视觉中枢做出复杂行为判断前,视网膜在对光刺激信号进行检测的同时,并行处理所捕获的图像信息。开发人工视觉系统的

苏州纳米所实现碳纳米管超薄膜可控制备并构筑柔性传感器

    透明单壁碳纳米管(SWNT)超薄膜具有很高的透光率、优异的机械性能、良好的导电性等多种独特的物理和化学特性,使其在诸如低成本柔性透明触摸屏、高灵敏度传感器、塑料电子等领域有着广泛的应用。因此,近年来关于碳纳米管薄膜的制备和性能研究受到了国内外研究者的广泛关注,而目前对薄膜的厚度和性能的可控制

基于碳纳米管修饰电极的胆碱电化学发光生物传感器研制

  电化学发光(ECL)分析法由于其可控性好、灵敏度高、选择性好、仪器简单等优点已成功应用于环境科学、生命科学和材料科学等领域。鲁米诺是常用的发光试剂,它具备很好的发光性能,尤其是对活性氧有良好的响应,可作为酶催化反应的信号输出,以研制ECL生物传感器〔1~3〕。诸多酶催化反应的产物为H2O2,可以

日本开发新型碳纳米管

  日本信州大学研究小组在碳纳米管中成功植入结晶性硫原子链,制成导电性更加优良、在空气中更加稳定的新型碳纳米管,其导电性能更加优良,且在 300℃以下的空气中呈现稳定状态,可用于纳米级微型导线的制作和能量储存等领域。该成果属世界首次,已刊载在英国《自然通讯》杂志上。   固体硫原子成环状,不通

美用碳纳米管制成超灵敏气体探测器

  据《每日科学》网站报道,在受到压力时,细胞会吐出一股含有微量氮氧化物和其他有毒物质的气流。最近,美国国家标准与技术研究院(NIST)的研究人员成功制作了一种超灵敏气体探测器,该探测器甚至灵敏到未来也许能探测到一个单细胞的微量排放,这为确定药物或纳米粒子是否会损害细胞或研究细胞间如何相互通信提供了

《物理化学杂志C》:硅纳米管储氢率或高于碳纳米管

实施氢能运输的技术关键是安全、高效和简洁。根据美国能源部(DOE)CAR课题组的研究,如果要让该技术成为现实,现有的储氢材料系统应该在室温下提供6%的储氢质量密度。当前,储氢方式的研究被认为是解决该问题的最有效途径。世界各国的研究小组都在寻找和试验多种材料,这些材料能够更加简易、可靠并且安全的吸收和