Antpedia LOGO WIKI资讯

光谱分析仪器的基本结构

光谱分析仪简称光谱仪,是将成分复杂的复合光分解为光谱线并进行测量和计算的科学仪器,被广泛应用于辐射度学分析、颜色测量、化学成份分析等领域,在冶金、地质、水文、医药、石油化工、环境保护、宇宙探索等行业发挥着重要作用。在照明行业,通常使用光谱仪来测量光源的光色参数。 本文对照明行业常用的光谱仪的工作原理进行了详细介绍,也对其性能参数进行了说明,可以作为设备选型时的基本参考。光谱仪的分类 1666年,牛顿在研究三棱镜时发现,太阳光在通过三棱镜后被分解成了七色光,这就是三棱镜对光线的色散现象。在光谱仪内部,也是利用色散组件的分光作用,通过不同的光路形式,将复色光分解成一系列独立的单色光,然后进行测量和计算。 光谱仪一般由分光系统、接收系统和数据处理系统组成,其工作原理是将光源发出的复色光按照不同的波长分离出来,配合各种光电探测器件对谱线强度进行测量,获得光谱功率(辐射)分布,再计算出色品坐标、色温、显色指数、光通量、辐射通量等......阅读全文

红外光谱仪的基本结构

  1.光源  光源能发射出稳定、高强度、连续波长的红外光,通常使用能斯特(Nernst)灯、碳化硅或涂有稀土化合物的镍铬旋状灯丝。  2.干涉仪  迈克耳孙(Michelson)干涉仪的作用是将复色光变为干涉光。中红外干涉仪中的分束器主要是由溴化钾材料制成的;近红外分束器一般以石英和CaF2为材料

实验室光谱仪器--红外光谱基本结构概述

一、概述红外光谱法(infrared spectroscopy)是研究红外线与物质间相互作用的科学,即以连续变化的各种波长的红外线为光源照射样品时,引起分子振动和转动能级之间的跃迁,所测得的吸收光谱为分子的振转光谱,又称红外光谱。傅里叶光谱法就是利用干涉图和光谱图之间的对应关系,通过测量干涉图和对干

X射线荧光光谱仪(XRF)基本结构

  现代X射线荧光光谱分析仪由以下几部分组成;X射线发生器(X射线管、高压电源及稳定稳流装置)、分光检测系统(分析晶体、准直器与检测器)、记数记录系统(脉冲辐射分析器、定标计、计时器、积分器、记录器)。

X射线荧光光谱仪(XRF)基本结构

现代X射线荧光光谱分析仪由以下几部分组成;X射线发生器(X射线管、高压电源及稳定稳流装置)、分光检测系统(分析晶体、准直器与检测器)、记数记录系统(脉冲辐射分析器、定标计、计时器、积分器、记录器)。

光谱分析仪器的基本结构

  光谱分析仪简称光谱仪,是将成分复杂的复合光分解为光谱线并进行测量和计算的科学仪器,被广泛应用于辐射度学分析、颜色测量、化学成份分析等领域,在冶金、地质、水文、医药、石油化工、环境保护、宇宙探索等行业发挥着重要作用。在照明行业,通常使用光谱仪来测量光源的光色参数。  本文对照明行业常用的光谱仪的工

傅里叶变换红外光谱仪的基本结构

红外线和可见光一样都是电磁波,而红外线是波长介于可见光和微波之间的一段电磁波。红外光又可依据波长范围分成近红外、中红外和远红外三个波区,其中中红外区(2.5~25μm;4000~400cm-1)能很好地反映分子内部所进行的各种物理过程以及分子结构方面的特征,对解决分子结构和化学组成中的各种问题最为有

从基本结构上比较原子吸收光谱与原子发射光谱的异同点

仪器基本结构不同原子发射光谱法:原子发射使用火焰发射头;原子吸收光谱法:原子吸收使用火焰燃烧头。能量传递的方式不同原子发射光谱法:通过测试元素发射的特征谱线及谱线强度来定性定量的;

酶标仪基本结构

1、酶标仪主要由光源系统、单色器系统、样品室、探测器和微处理器控制系统等组成。2、酶标仪即酶联免疫检测仪是酶联免疫吸附试验的专用仪器又称微孔板检测器。可简单地分为半自动和全自动2大类,但其工作原理基本上都是一致的,其核心都是一个比色计,即用比色法来进行分析。 测定一般要求测试液的最终体积在250μL

细菌的基本结构与特殊结构

1.细菌的基本结构结构特点及功能细胞壁主要组分为肽聚糖,其功能是:①维持细菌形态;②参与细胞内外物质交换;③细胞壁上还带有多种抗原决定簇,决定细菌的抗原性;细胞膜功能:物质转运;生物合成;呼吸作用;分泌作用细胞质细菌新陈代谢的主要场所,胞质内含有核酸和多种酶系统,参与菌体内物质的合成代谢和分解代谢核

结构域的基本结构特点

在蛋白质三级结构内的独立折叠单元。结构域通常都是几个超二级结构单元的组合至蛋白质多肽链在二级结构的基础上进一步卷曲折叠成几个相对独立的近似球形的组装体。结构域(Structural Domain)是介于二级和三级结构之间的另一种结构层次。所谓结构域是指蛋白质亚基结构中明显分开的紧密球状结构区域,又称