《Science》极早期发育时期惊现神经突触

大脑新皮层(cerebral neocortex)掌权人脑功能,如有意识的思维和语言。在新皮层中,数十亿神经元被精确排列成有序的6层结构。在婴儿时期,这些神经元有次序地生成,再迁移至大脑表面。 “亚板神经元(subplate neurons)”是新皮层首批出现的神经元之一,它们在新皮层发育时短暂地工作,在发育完成时销声匿迹。科学家们尚不清楚它们对神经元迁移是否有作用。 在这项研究中,研究小组发现,亚板神经元形成瞬时突触与新生神经元接触,向后者发送信号指导它们迁移。 突触是连接神经元的结构。在成熟神经元中,它们被认为是神经元相互通信的关键。发表在4月20日的这篇《Science》文章首次揭示了突触在皮层发育过程中对神经元迁移的影响。 “我们感到惊讶,因为过去我们认为只有成熟神经元才能使用突触结构。我们未曾想到能在这么早期的发育过程中看见突触,”文章一作Chiaki Ohtaka-Maruyama说。 胎儿新皮层发育时......阅读全文

Nature惊人发现:神经元通讯无需突触

  十一月二十一日的Nature杂志上发表了一项新研究,显示果蝇触须中相邻的嗅觉神经元可以相互阻断,即使二者并没通过突触直接相连。这种通讯手段被称为ephaptic coupling,神经元通过电场使其邻居沉默,而不是通过突触传递神经递质。   “Ephaptic coupling这一理论

科学家实现人工神经元突触的量子成像

原文地址:http://news.sciencenet.cn/htmlnews/2023/10/510468.shtm中国科学技术大学郭光灿院士团队孙方稳教授课题组和国家同步辐射实验室/核科学技术学院邹崇文研究员课题组合作,制备基于二氧化钒相变薄膜的类脑神经元器件,并利用金刚石中氮-空位(NV)色心

我国科学家成功探测人工神经元突触的量子成像

16日,从中国科学技术大学获悉,该校郭光灿院士团队孙方稳课题组与合作者合作,制备了基于二氧化钒相变薄膜的类脑神经元器件,并利用金刚石中氮-空位(NV)色心作为固态自旋量子传感器,探测了神经元突触在外部刺激下的动态连接,展示了类脑神经系统中多通道信号传递和处理过程。这项研究成果日前发表于国际期刊《科学

我国科学家成功探测人工神经元突触的量子成像

原文地址:http://news.sciencenet.cn/htmlnews/2023/10/510317.shtm记者16日从中国科学技术大学获悉,该校郭光灿院士团队孙方稳课题组与合作者合作,制备了基于二氧化钒相变薄膜的类脑神经元器件,并利用金刚石中氮-空位(NV)色心作为固态自旋量子传感器,探

黄海博士等报道非神经元细胞之间的类突触信号传导

  生物体的基本单位是细胞,细胞之间是如何交流信息一直是科学家们关心的问题。虽然动物身体中几乎所有细胞都与周围细胞交流,但许多科学家认为只有构成大脑和神经系统的神经元细胞才能通过突触连接完成直接长距离传输和接收信号的任务,而非神经元细胞主要是将信号蛋白分泌到细胞外空间中,通过扩散到达靶细胞。  神经

Cell-Res:神经元突触囊泡转运的分子调控新机制

  近日,中国科学院上海生命科学研究院神经科学研究所、脑科学与智能技术卓越创新中心、神经科学国家重点实验室熊志奇研究组,在小脑和运动障碍研究领域取得进展。相关研究成果以《PRRT2缺失造成小脑内的突触传递异常介导阵发性运动诱发性运动障碍》为题,在线发表在Cell Research上。研究人员系统地从

中国科大团队在人工神经元突触的量子成像取得重要进展

近日,中国科大郭光灿院士团队孙方稳课题组和国家同步辐射实验室/核科学技术学院邹崇文课题组合作,制备了基于二氧化钒(VO?)相变薄膜的类脑神经元器件,并利用金刚石中氮-空位(NV)色心作为固态自旋量子传感器探测了神经元突触在外部刺激下的动态连接,展示了类脑神经系统中多通道信号传递和处理过程。这项研究成

Science:神经元突起中,单核糖体偏好性地翻译突触mRNA

  RNA测序和原位杂交揭示了神经元树突和轴突中存在意想不到的大量RNA种类,而且许多研究已经记录了蛋白在这些区室中的局部翻译。在信使RNA(mRNA)的翻译过程中,多个核糖体可以同时占据单个mRNA(一种称为多核糖体的复合物),从而导致编码蛋白的多个拷贝产生。多核糖体通常在电子显微镜图片中被识别为

科学家阐明神经元细胞突触可塑性的分子机制

  近日,一项刊登在国际杂志Neuron上的研究论文中,来自日本东京工业大学等处的科学家们通过研究发现,当眼睛中的神经元长时间暴露于光下后,其会改变特殊分子的水平,随后研究者又鉴别出了一种特殊的反馈信号机制或许是引发这一改变的原因,因此研究者或可利用先天性的神经元特性来保护眼部神经元免于退化或细胞死

3016个神经元和54.8万个突触,首张昆虫大脑图谱绘就

图片来源:Eye of Science/Science Photo Library科学家绘制了第一张完整的昆虫大脑图谱,包括所有神经元和突触。这是理解大脑如何处理感官信息流并将其转化为行动的里程碑式成就。相关论文3月9日发表于《科学》。果蝇是一种重要的模式动物,黑腹果蝇幼虫的大脑比罂粟籽还小。这项研

科学家发现“线粒体炫”调控神经元突触水平的长时程记忆

  为什么有的记忆能铭刻一生而有的只能存在几分钟?短期的记忆如何转变为长期的记忆?近日,中国科学技术大学生命科学学院毕国强课题组与北京大学分子医学研究所程和平课题组合作,发现神经元树突“线粒体炫信号”在神经突触传递短时程记忆向长时程记忆的转化中可能发挥着关键作用,相关成果于6月26日在《自然-通讯》

新研究进一步破译神经元突触可塑性机制

  人类大脑如何将外部信息转化为自己的记忆?作为“人类大脑计划”的一部分,来自德国、瑞典和瑞士的科研小组研究了大脑纹状体中的神经元回路。研究结果发表在近期的《计算生物学》杂志上,对理解神经系统的基本功能具有重要意义。  大脑信息处理发生在通过突触连接的神经回路内,突触的任何变化都会影响我们记忆事物,

陈宜张著作《突触》:研究“突触”的一块基石

   读陈宜张院士沉甸甸的学术著作《突触》,我们深切感受到的是一位老科学家在科学征程上执着追求的赤诚。陈宜张已87岁,成就卓著,仍没有懈怠,辛勤耕耘,在独立出版54万字的《神经科学的历史发展与思考》五年之后,又以一人之力推出大作《突触》。其为神经科学传道授业的热忱,不能不让我们这些学界晚辈为之汗颜。

瘦素可促进突触形成或突触发生

  瘦素这种激素以调节食欲而闻名,如今证据表面,它似乎会影响神经元的发育——这一发现可能有助于解释诸如自闭症等与功能失调的突触形成有关的疾病。  瘦素是一种由成人体内脂肪细胞释放的激素,研究人员主要关注它是如何控制食欲的。在5月18日发表在《科学信号》(Science Signaling)杂志上的一

许多动物细胞也能跟神经元一样伸长并彼此间形成突触...

新发现许多动物细胞也能跟神经元一样伸长并彼此间形成突触摘要:加州大学旧金山分校的研究人员发现,许多的动物细胞类型同样能够伸长并在彼此之间形成突触,它们采用信号蛋白代替神经元所利用的神经递质和电冲动作为信息单位。这一研究发现直接地挑战了普遍的动物细胞通讯生物学模型。相关文章发表于2014年1月2日的《

Prl1对于神经元形成最高密度突触起决定性作用

  大脑由大量相互连接的神经元组成。数十年来,研究人员对神经元细胞的复杂模式如何在发育过程中发展成功能回路的过程十分感兴趣。如今,研究人源已在果蝇中发现了一种新的信号传导机制,它指明了大脑中神经元回路的形成。  大约1000亿个神经元在我们的大脑中形成一个复杂且相互关联的网络,使我们能够生成复杂的思

什么是免疫突触?

T细胞突触即免疫突触。成熟T细胞在与APC识别结合的过程中,多种跨膜分子聚集在富含神经鞘磷脂和胆固醇的“筏”状结构上并且互相靠拢成簇,形成细胞间互相结合的部位,其中心区为TCR和抗原肽-MHC分子,以及T细胞膜辅助分子和相应配体,周围环形分布着大量的其它细胞粘附分子。

最新研究发现突触脉冲的强度与突触大小直接相关

  神经细胞通过突触彼此交流。近日,发表在《Nature》上的一项研究中,来自苏黎世大学神经信息学研究所和苏黎世联邦理工学院的Kevan Martin实验室的研究团队发现,这些联系似乎比以前认为的要强大得多。突触越大,传递的信号就越强。这些发现将有助于更好地了解大脑功能以及神经系统疾病是如何产生的。

突触的含义以及横过突触空隙传递神经讯号的步骤

突触(synapse)是神经纤维间的连繫。所有的神经纤维都是以轴突末稍(dendrite)连到其它神经纤维的树突末稍(axonbrush)。而且在轴突末稍和树突末稍间留有一个空隙,称为突触空隙(synspticcleft)。如下图所示。  横过突触空隙传递神经讯号的步骤: (1)神经讯号到达轴突末稍

突触信号传送的概念

中文名称突触信号传送英文名称synaptic signaling定  义神经系统中穿过化学突触进行细胞间的信号传递方式。应用学科细胞生物学(一级学科),细胞通信与信号转导(二级学科)

突触信号传送的定义

中文名称突触信号传送英文名称synaptic signaling定  义神经系统中穿过化学突触进行细胞间的信号传递方式。应用学科细胞生物学(一级学科),细胞通信与信号转导(二级学科)

人工突触可自主学习

  来自法国国家科学研究中心及其他研究组织的研究人员创造了一种能够自主学习的人工突触。他们还对该设备进行建模,这对于开发更复杂的脑回路至关重要。该研究4月3日在《自然—通讯》杂志上发表。  生物模拟学的目标之一是从大脑的功能中获得灵感,以便设计越来越多的智能机器。这一原则已经以完成特定任务的算法形式

突触信号传送的定义

中文名称突触信号传送英文名称synaptic signaling定  义神经系统中穿过化学突触进行细胞间的信号传递方式。应用学科细胞生物学(一级学科),细胞通信与信号转导(二级学科)

什么是T细胞突触-?

T细胞突触是APC(抗原提呈细胞)和T细胞相互作用的过程中,在细胞与细胞接触部位形成了一个特殊的结构,称为T细胞突触(T cell synapse),又称为免疫突触(immunological synapse)。

研究揭示突触可塑性长时程增强的突触后分子机制

  中枢神经系统是脊椎动物调控最复杂、最严谨的器官之一,控制着感觉感知、情绪调节和机体维持等基本神经活动,以及思维、认知和意识等高级神经活动。大脑最重要的特征之一就是能够存储大量的信息,即学习和记忆能力,在阿兹海默病等神经精神疾病的患者中,学习和记忆能力的异常是重要的临床表征之一。神经元之间相互形成

关于化学突触的基本信息介绍

  神经系统由大量的神经元构成。这些神经元之间在结构上并没有原生质相连,仅互相接触,其接触的部位称为突触。由于接触部位的不同,突触主要可分为类:(1)轴突-胞体式突触;(2)轴突-树突式突触;(3)轴突-效应器式突触(4)突触-突触式突触.一个神经元的轴突末梢反复分支,末端膨大呈杯状或球状,称为突触

抑制的生理过程

在构成中枢神经系统和外周神经系统的神经细胞(又称神经元)间的突触水平上,普遍存在着抑制现象。脑内神经元间的突触抑制,构成上述大脑皮质抑制过程的基础条件。目前认为突触抑制可能在两个部位:一个是突触前的轴突末梢,称为突触前抑制;另一个是突触后膜,称突触后抑制。前者是指通过某种生理机制减少了兴奋性突触的递

-Nature:星形细胞参与突触消除

  突触消除是脑发育的一个重要方面,在其中突触接触的数量以依赖于活动的方式减少。胶质细胞(在脑中发挥各种作用的非神经细胞)最近被发现在突触重塑中起一定作用,其中能吞噬细胞的小神经胶质负责一定比例的连接优化,而关于这一现象背后机制的其他情况则基本上不清楚。   在这篇文章中,Won-Suk Chun

简述突触核蛋白错误折叠

  研究发现α-突触核蛋白正常、错误折叠及其寡聚化之间存在动态平衡,当这种平衡被打破后原纤维迅速聚集成大分子、不溶性的细纤维;α-突触核蛋白在不同的影响因素下会表现出许多种形态,包括舒展态、溶解前球型态、α-螺旋态(膜结合),β-片层态、二聚体态、寡聚体态、以及不可溶的无定型态和纤维态;α-突触核蛋

中美合作脑神经环路发育研究获重要进展

  复旦大学神经生物学研究所禹永春课题组与美国纽约斯隆凯特琳癌症研究中心时松海课题组合作,日前在脑神经环路发育研究中,首次发现脑神经元间由电突触介导的信息交流在大脑皮层神经环路发育中有重要作用,相关研究成果今天在线发表在国际期刊《自然》杂志上。     电突触被普遍认为在神经元相互信息交流中具有