Antpedia LOGO WIKI资讯

微载体培养技术(microcarrierculturetechnique)原理操作1

一、微载体培养应用此技术于1967年被用于动物细胞大规模培养。经过三十余年的发展,该技术目前已渐日趋完善和成熟,并广泛应用于生产疫苗、基因工程产品等。微载体培养是目前公认的最有发展前途的一种动物细胞大规模培养技术,其兼具悬浮培养和贴壁培养的优点,放大容易。目前微载体培养广泛用于培养各种类型细胞,生产疫苗、蛋白质产品,如293细胞、成肌细胞、Vero细胞、CHO细胞。 使用较多的反应器有两种:贝朗公司的BIOSTAT?B反应器,使用双桨叶无气泡通气搅拌系统;NBS公司的CelliGen、 CelliGen PlusTM和Bioflo3000反应器,使用Cell-lift双筛网搅拌系统。两种系统都能实现培养细胞和收获产物的有效分离。 二、微载体 是指直径在60-250μm,能适用于贴壁细胞生长的微珠。一般是由天然葡聚糖或者各种合成的聚合物组成。自 Van Wezel用DEAE-Sephadex A 50 研制......阅读全文

微载体培养技术(microcarrier culture technique)原理操作-1

一、微载体培养应用此技术于1967年被用于动物细胞大规模培养。经过三十余年的发展,该技术目前已渐日趋完善和成熟,并广泛应用于生产疫苗、基因工程产品等。微载体培养是目前公认的最有发展前途的一种动物细胞大规模培养技术,其兼具悬浮培养和贴壁培养的优点,放大容易。目前微载体培养广泛用于培养各种类型细胞,生产

微载体培养技术(microcarrier culture technique)原理操作-2

5. 微载体培养操作要点 ●培养初期:保证培养基与微球体处于稳定的PH与温度水平,接种细胞(对数生长期,而非稳定期)至终体积1/3的培养液中,以增加细胞与微载体接触的机会。不同的微载体所用浓度及接种细胞密度是不同的。常使用2-3g/L的微载体含量,更高的微载体浓度需要控制环境或经常换液。 ●

微载体培养操作要点

●培养初期:保证培养基与微球体处于稳定的PH与温度水平,接种细胞(对数生长期,而非稳定期)至终体积1/3的培养液中,以增加细胞与微载体接触的机会。不同的微载体所用浓度及接种细胞密度是不同的。常使用2-3g/L的微载体含量,更高的微载体浓度需要控制环境或经常换液。●贴壁阶段(3-8d)后,缓慢加入培养

微载体培养的原理

   微载体培养技术(micro-carrierculturetechnique)于1967年被用于动物细胞大规模培养。经过三十余年的发展,该技术日趋完善和成熟,广泛应用于生产疫苗、基因工程产品等。    微载体是指直径60-250μm,能适用于贴壁细胞生长的微珠。一般是由天然葡聚糖或者各种合成的聚

微载体技术的培养优点

●表面积/体积(S/V)大,因此单位体积培养液的细胞产率高;●把悬浮培养和贴壁培养融合在一起,兼有两者的优点;●可用简单的显微镜观察细胞在微珠表面的生长情况;●简化了细胞生长各种环境因素的检测和控制,重现性好;●培养基利用率较高;●放大容易;●细胞收获过程不复杂;●劳动强度小;●培养系统占地面积和空

微载体培养的技术方法

微载体培养是指微载体以微小颗粒作为细胞贴附的载体,可提供相当大的贴附面积,由于载体体积很小,比重较轻,在轻度搅拌下即可使得细胞悬浮在培养液内,最终能够使细胞在载体表面繁殖成单层的一种细胞培养技术。

微载体培养的技术特点

●表面积/体积(S/V)大,因此单位体积培养液的细胞产率高;  ●把悬浮培养和贴壁培养融合在一起,兼有两者的优点;  ●可用简单的显微镜观察细胞在微珠表面的生长情况;  ●简化了细胞生长各种环境因素的检测和控制,重现性好;  ●培养基利用率较高;  ●放大容易;  ●细胞收获过程不复杂;  ●劳动强

微载体的原理与操作

1.原理:其原理是将对细胞无害的颗粒-微载体加入到培养容器的培养液中,作为载体,使细胞在微载体表面附着生长,同时通过持续搅动使微载体始终保持悬浮状态。贴壁依赖性细胞在微载体表面上的增殖,要经历黏附贴壁、生长和扩展成单层三个阶段。细胞只有贴附在固体基质表面才能增殖,故细胞在微载体表面的贴附是进一步铺展

微载体细胞培养技术及应用原理

  微载体细胞培养技术是细胞培养过程中常见的一种细胞培养技术。关于微载体细胞培养技术,以动物细胞为例,具体介绍如下:   一、微载体培养技术的应用   微载体培养技术于1967年被用于动物细胞大规模培养。经过三十余年的发展,该技术目前已渐日趋完善和成熟,并广泛应用于生产疫苗、基因工程产品等。

Aseptic Technique and Good Cell Culture Practice

AimTo ensure all cell culture procedures are performed to a standard that will prevent contamination from bacteria, fungi and mycoplasma and cross con

微载体细胞培养技术及应用原理(一)

微载体细胞培养技术是细胞培养过程中常见的一种细胞培养技术。关于微载体细胞培养技术,以动物细胞为例,具体介绍如下: 一、微载体培养技术的应用微载体培养技术于1967年被用于动物细胞大规模培养。经过三十余年的发展,该技术目前已渐日趋完善和成熟,并广泛应用于生产疫苗、基因工程产品等。微载体培养是目前公认的

微载体细胞培养技术及应用原理(二)

5.微载体培养操作要点• 培养初期:保证培养基与微球体处于稳定的PH与温度水平,接种细胞(对数生长期,而非稳定期)至终体积1/3的培养液中,以增加细胞与微载体接触的机会。不同的微载体所用浓度及接种细胞密度是不同的。常使用2-3g/L的微载体含量,更高的微载体浓度需要控制环境或经常换液。• 贴壁阶

Cytodex 1, Cytodex 3 球形微载体的使用(一)

用于细胞培养的微载体 微载体培养(microcarrier culture)是一种用于高产量培养贴壁细胞的实用技术。CytodexTM专用于培养各类动物细胞,其培养体积可以从数毫升到6000升以上。应用Cytodex微载体技术,可以实现简单的贴壁细胞悬浮化培养,每毫升培养液可得到数百万细胞。微载

显微操作技术(micromanipulation technique)

显微操作技术(micromanipulation technique)是指在高倍复式显微镜下,利用显微操作器(micromanipulator)进行细胞或早期胚胎操作的一种方法。显微操作器是用以控制显微注射针在显微镜视野内移动的机械装置。显微操作的基础平台--倒置研究级显微镜(例如OLYMPUS的I

沉淀反应技术(Precipitation reaction technique)(1)

一、 概述可溶性抗原(如细菌浸出液、含菌病料浸出液、血清以及其他来源的蛋白质、多糖质、类脂体等)与其相应的抗体相遇后,在电解质参与下,抗原抗体结合形成白色絮状沉淀,出现白色沉淀线,此种现象称为沉淀反应。沉淀反应中的抗原叫沉淀原(precipitinogen),与沉淀原发生反应的抗体称为沉淀素(pre

免疫荧光技术(immunofluorescence technique)-1

免疫荧光技术(immunofluorescence technique)是一种以荧光物作为标记物的免疫分析技术,荧光物质分子在特定条件下吸收激发光的能量后,分子呈激发态而极不稳定,其迅速回到基态时,可以电磁辐射形式释放出所有的光能,发射出波长较照射光长的荧光。用荧光素与已知的抗体(或抗原,较少用

微载体的应用原理

1.原理:其原理是将对细胞无害的颗粒-微载体加入到培养容器的培养液中,作为载体,使细胞在微载体表面附着生长,同时通过持续搅动使微载体始终保持悬浮状态。  贴壁依赖性细胞在微载体表面上的增殖,要经历黏附贴壁、生长和扩展成单层三个阶段。细胞只有贴附在固体基质表面才能增殖,故细胞在微载体表面的贴附是进一步

Vero 细胞在 WAVE 反应器中的微载体球转球放大(五)

相比搅拌罐而言,WAVE 反应器在同一个培养袋中可以有更宽的培养范围(10-100%工作体积),对于种子扩增和细胞消化的不同反应体积,都可以提供均匀有效的混合,从而实现微载体的原位消化,而无需特定的消化反应器。避免了消化前后微载体的转移,操作简单,均匀有效的混合有利于精密控制消化反应的条件,最大

层析技术(Layer-analise technique)(1)

离子交换层析技术是以离子交换纤维素或以离子交换葡聚糖凝胶为固定相,以蛋白质等样品为移动相,分离和提纯蛋白质、核酸、酶、激素和多糖等的一项技术。 (一)原理 在纤维素与葡聚糖分子上结合有一定的离子基团,当结合阳离子基团时,可换出阴离子,则称为阴离子交换剂。如二乙氨乙基(Dicthy

293细胞培养(cell culture)技术

1、293细胞明显适应酸性环境,pH值在6.9~7.1时,可顺利贴壁生长, 换液时动作要轻。一般用高糖的DMEM培养基。2、传代:倒去废液,PBS洗一次(轻),用0.02%EDTA与0.25%Trypsin消化,生长良好细胞,培养瓶中轻摇,使之流遍所有细胞表面,即将其吸除或弃去消化30s,然后吸去,

New Brunswick S41i CO2 恒温摇床进行间充质干细胞扩增(一)

A Novel Method for the Expansion of Mesenchymal Stem Cells using an Eppendorf New Brunswick™ S41i CO2 Incubator ShakerKhandaker Siddiquee and Ma Sha,

微载体细胞培养法介绍

(1)微载体选择:先用利用三种小量微载体做培养实验,观察细胞在一定时间内细胞的吸着率和计算细胞数,以得到最大量细胞为佳。(2)水化:称一定量的微载体放入容器中,按每克微载体加50~100ml的比例,加入无Ca2+和Mg2+的磷酸缓冲液(PBS),室温下放置应不少于3小时,并不时轻微搅动,然后再用新鲜

微载体

实验方法原理以高浓度接种细胞和微珠,然后按照要求进行稀释、搅拌和取样。实验材料起始培养物仪器、耗材生长培养基微载体搅拌培养瓶磁力搅拌器实验步骤1. 按照所需最终培养液量的 1/3,以 2~3 g/L 混悬微珠。2. 用胰蛋白酶消化和计数细胞,以正常接种浓度的 3~5 倍将细胞接种到微珠悬液中。3.

微载体

            实验方法原理 以高浓度接种细胞和微珠,然后按照要求进行稀释、搅拌和取样。 实验材料 起始培养物

微载体

            实验方法原理 以高浓度接种细胞和微珠,然后按照要求进行稀释、搅拌和取样。 实验材料 起始培养物

离心技术(centrifugation technique)与离心机类型(1)

最大速度方法(1)移动界面超速离心法含几个组分的样品在足够高的离心场中离心时,每种颗粒都达到其最大沉降速度,这时样品开始分离。离心管的上层逐渐形成透明的上清液,并形成对应于样品各组分的一系列浓度界面,界面的移动相对于每种组分来说是特征的。虽然利用这种方法不一定能实现组分的纯化分离,但可以通过监测界面

植物细胞培养(plant cell culture)技术概述

植物细胞培养技术就是为了某种目的而在细胞水平上对离体植物细胞或原生质体进行的一系列生物工艺学操作。它包括分离、培养、再生以及一系列相关的操作。就有用化合物的生产来说,它主要是指在无菌条件下通过悬浮培养植物细胞生产有用化合物的过程。理论与技术基础:植物细胞全能性、微生物液体深层发酵系统、遗传工程

什么是动物细胞的微载体培养

微载体培养:微载体以细小的颗粒作为细胞载体,通过搅拌悬浮在培养液内,使细胞在载体表面繁殖成单层的一种细胞培养技术。可以充分利用培养液,保持了贴壁细胞的生长特性,还可以进行高密度培养。

特殊细胞培养实验_微载体细胞培养法

实验方法原理微载体细胞培养开始于60年代末期,最早使用离子交换凝胶作为载体,轻微搅动即可悬液在培养基中,因而可增加细胞附着的面积,达到大量培养细胞的目的。后来,根据细胞附着生长的特点,对微载体进行了改良,使其带有电荷或其它介质,更利于细胞附着和生长。这一方法亦可用于常规量的培养,也可用于大规模的培养

微载体实验

实验方法原理 以高浓度接种细胞和微珠,然后按照要求进行稀释、搅拌和取样。实验材料 起始培养物仪器、耗材 生长培养基微载体搅拌培养瓶磁力搅拌器实验步骤 1. 按照所需最终培养液量的 1/3,以 2~3 g/L 混悬微珠。2. 用胰蛋白酶消化和计数细胞,以正常接种浓度的 3~5 倍将细胞接种到微珠悬液中