Antpedia LOGO WIKI资讯

DNA精确操控碳纳米管晶格

美国科学家在最新一期《科学》杂志上发表论文指出,他们利用DNA精确修改碳纳米管晶格,使晶格可以按需精确组装并按预期发挥作用,从而克服了室温超导体研制过程中此前被认为几乎无法逾越的障碍,有望催生出能彻底改变电子技术的室温超导体。 50多年前,斯坦福大学物理学家威廉·利特尔首次提出室温超导体,但迄今一直未能真正实现。研究人员指出,目前的超导体只能在极高或极低温度下使用,而室温超导体有助研制出超高速计算机,缩小电子设备的尺寸,研制出性能优异的磁悬浮列车,并大幅降低能源使用等。 研究论文合著者、弗吉尼亚大学医学院的爱德华·埃格曼博士解释道,实现利特尔超导体的一种可能方法是修改碳纳米管晶格。碳纳米管是一种空心圆柱体,尺寸非常小。但这种方法面临一个巨大的挑战:控制纳米管沿线的化学反应,使晶格可以按需精确组装,并按预期发挥作用。 埃格曼是低温电子显微镜(cryo-EM)领域的领军人物,在最新研究中,他们用到了这一技术。研究团......阅读全文

DNA精确操控碳纳米管晶格

美国科学家在最新一期《科学》杂志上发表论文指出,他们利用DNA精确修改碳纳米管晶格,使晶格可以按需精确组装并按预期发挥作用,从而克服了室温超导体研制过程中此前被认为几乎无法逾越的障碍,有望催生出能彻底改变电子技术的室温超导体。 50多年前,斯坦福大学物理学家威廉·利特尔首次提出室温超导体,

Science:DNA掺杂的“超晶格”

  西北大学Vinayak P. Dravid、Chad A. Mirkin和Koray Aydin(共同通讯作者)等人开发了一种新技术,用于制造具有纳米结构的超材料,这种纳米结构可以被赋予独特的光学特性。通过使用附着在DNA链上的可以根据要求缩小或拉伸的金纳米粒子,该研究团队能够改变材料的颜色,通

DNA纳米管把药物释放到病变细胞

  研究人员研制出一种被称为“魔术弹”的纳米管,将来有一天可通过该管释放药物到具体病变细胞中。   加拿大麦吉尔大学化学系研究人员汉娜蒂•斯莱曼博士领导的一个研究小组在纳米管研究上取得重大突破。这种纳米管被称为“魔术弹”,将来有一天可通过该管释放药物到具体病变细胞中。斯莱曼博士说,研究涉及到将

《自然》:美开发DNA序列分拣碳纳米管新法

  碳纳米管为长形细小的石墨圆筒,具有电子学和热力学等多方面的特征,这些特征随着碳纳米管的形状和结构变化而有所不同。人们发现,碳纳米管多重性特征致使其本身有能力应用于电子学、激光器、传感器和生物医学,同时也能作为复合材料中的增强元素。   目前用于生产碳纳米管的方法所获得的是由粗细各异和对

我国研究人员实现制备大尺寸DNA纳米管

   自从20世纪80年代DNA纳米技术的概念提出以来,利用DNA模块、DNA折纸及环状DNA等多种方法都可实现DNA纳米管的自组装,但其尺寸均受到了严重限制,目前报道的DNA纳米管直径大多小于100纳米。因此,制备大尺寸DNA纳米管为科学界面临的重大挑战。但是由于DNA自身良好的生物相容性,使得

西安交大医学部成功制备大尺寸DNA纳米管

  DNA自身具有良好的生物相容性,因此DNA纳米管在药物运载、生物反应器等方面有着可观的应用前景。自从20世纪80年代DNA纳米技术的概念提出以来,利用DNA模块、DNA折纸及环状DNA等多种方法都可实现DNA纳米管的自组装,但其尺寸均受到了严重限制,目前报道的DNA纳米管直径大多小于100nm。

“人造原子”组成完美晶格

   因为可以组织成看起来像分子的结构,一些世界上最小的晶体被称为人造原子,包括作为新材料潜在构件的超晶格。 现在,来自斯坦福大学的科学家首次观察到纳米晶体迅速形成超晶格并不断增长的过程。他们的发现将有助于科学家微调装配工艺,使其适应新型材料,如磁存储、太阳能电池、光电子以及加速化学反应的催化剂

新型超晶格摄像机问世

  据美国物理学家组织网近日报道,美国西北大学量子设备中心最近开发出一种功能强大的Ⅱ型超晶格摄像机,能通过调节吸收更宽波段的红外光,让人们能在黑夜中看到更加丰富多彩的景色。他们的研究发表在最近出版的《光学通讯》上。   可见光波段的数字摄像机配备的探测器通常只能感测红、绿、蓝那些能被

半导体超晶格研究获进展

  最近由中国、西班牙和德国组成的研究团队(中国科学院苏州纳米技术与纳米仿生研究所、国防科技大学、西班牙皇家马德里第三大学和德国Paul-Drude固体电子研究所),通过研究证明了利用噪声,可以在一种由量子共振隧穿效应引起的具有多自由度非线性动力学系统的半导体超晶格器件中诱导出空间和时间序,用于检测

纳米超晶格构筑方法获突破

  近日,中科院深圳先进技术研究院研究员喻学锋与香港城市大学教授朱剑豪合作,在纳米自组装三维超晶格光学芯片领域取得新突破,解决了“咖啡圈效应”难题。相关论文已被《先进材料》杂志作为封面文章发表。  纳米超晶格是由纳米颗粒周期性有序堆积而形成的新型超材料。该结构中,有序排列的相邻纳米颗粒在光、电、磁等