美成功控制单分子厚度电路中的电流

科学家们在开发微观电路方面面临着一些障碍,比如如何可靠地控制流经一个只有单分子厚度的电路中的电流。现在,美国罗切斯特大学化学工程助理教授亚历山大·谢斯特帕罗夫成功做到了这一点,朝着研制纳米级电路又迈进了一步。 “直到现在,科学家们一直无法可靠地直接引导电流从一个分子流向另一个分子。”谢斯特帕罗夫说,“但这正是只有一个或两个分子厚的电子电路工作时需要做的。” 在这项实验中,谢斯特帕罗夫利用一个简单的微观电路为一个有机发光二极管(OLED)供电,电路的正负极之间通过一张只有一个分子厚的有机材料薄膜连接。最近公布的研究已经表明,在如此薄的电路中,要控制电流在两极之间的流动非常难。而谢斯特帕罗夫在发表于《先进材料界面》杂志上的论文中解释说,解决这一问题的关键是增加一个分子惰性层。 据美国物理学家组织网4月22日(北京时间)报道,这个惰性层或非反应性层是由直链有机分子构成的。在其上面分布着一层环状的芳香族分子,充当传......阅读全文

得到一个电荷分子量应该怎么算

1.电子的质量和质子的质量可是差了三个数量级哦!不能因为他们每个的电荷量相等就代表质量相等哦! 当多了一个电子的时候 其相对原子质量是不可能增加1那么多的哦~ 具体数字希望你在查完相关资料后做个计算体会一下!这里你犯的错误呢,就是:错把单个质子与单个电子的电荷量相等,当做是质量相等了!(告诉你哦,一

新研究实现分子内电荷转移染料“荧光反转”

分子内电荷转移染料“荧光反转” 。华东理工大学供图  近日,华东理工大学化学与分子工程学院朱为宏课题组在一项最新研究中揭示了有机染料“荧光反转”机制,该研究成果在线发表于《自然—通讯》。  分子内电荷转移(ICT)是设计生物传感染料和荧光成像的重要可视化机制,但ICT染料的供体单元与含羰基、酰基等吸

分子内电荷转移加强为什么会发生红移

分子内电荷转移加强会发生红移的原因是:1、底物与吸电子基团结合,将增大分子内电荷转移程度,导致荧光光谱红移。2、从高能天体发出的高能光辐射,经过依次低能的电磁场介质远距离传递时,产生能耗、频率衰减、波长延长的介质调制作用。3、星系与星系之间,星体与星体之间,相对于宇宙背景存在公转及自转的背离运动,会

分子内电荷转移加强为什么会发生红移

分子内电荷转移加强会发生红移的原因是:1、底物与吸电子基团结合,将增大分子内电荷转移程度,导致荧光光谱红移。2、从高能天体发出的高能光辐射,经过依次低能的电磁场介质远距离传递时,产生能耗、频率衰减、波长延长的介质调制作用。3、星系与星系之间,星体与星体之间,相对于宇宙背景存在公转及自转的背离运动,会

掌握DNA分子的“车流速度”-单分子操作实现近乎完美控制

  瑞士洛桑联邦理工学院(EPFL)研究人员多年来致力于改进纳米孔技术,该技术可让DNA分子通过膜上的小孔以测量离子电流,研究人员则可以通过分析核苷酸在电流通过时的扰动情况,来确定DNA的核苷酸序列。该研究19日发表在《自然·纳米技术》上。  分子的快速运动使得对其实现高精度分析具有挑战性。EPFL

单位时间通过横截面积的电荷量的电荷量是净电荷量吗

是净电荷量在一段导体中,导体的横截面积为S,单位体积内带电粒子数n,带电粒子的定向移动速度为v,单个粒子的电荷量q;根据电流的定义:单位时间通过横截面积的电荷量,即I=Q/t;取时间为t过程研究,通过横截面积的带电粒子所占的体积为LS=vtS,这个体积内所包含的带电粒子数为nvtS,这些粒子所带的总

电荷平衡法

这种方法对离子方程式最有用。在离子方程式中,除了难溶物质、气体、水外,其它的都写成离子形式,首先让方程两端的电荷相等,再用观察法去配平水、气体等。这种方法一般不失手,但对氧化还原反应却不太好用。如:碳酸氢铵溶液中滴加足量的氢氧化钠溶液1.首先把可电离的物质写成离子形式:H+ + NH4+ + OH-

电荷转移法

这种方法适用于较复杂的离子方程式(氧化还原反应),用一般的方法比较复杂,但是从离子的转移来看(化合价的升降)就简单一些。这个方法是观察化合物在反应前后离子的得失电子数目,通过配平得失电子,来得到两种物质的化学计量比,再通过设未知数来完成方程式的配平。举例:高锰酸钾和浓盐酸的反应。MnO4- + H+

什么是双电荷

单电荷离了一个电子,带一个正电。双电荷离了两个电子,带两个正电。带电量差了一倍。

畸形蛋白质引发的疾病有望通过测量单分子有效电荷诊断

  瑞士国家科学基金会近期宣布,瑞士研究人员首次精确测量出了单个分子在溶液中的有效电荷,相关研究有望用于未来的医学诊断。  许多生命现象涉及蛋白质等分子之间的相互作用,而电荷在其中起着至关重要的作用。然而,蛋白质在生物体内通常存在于含水环境中,用传统方法很难准确地测量蛋白质在这一环境中的电荷。  苏

中科院大连化物所发现光诱导分子内电荷转移机制

  中科院大连化物所研究员徐兆超团队与新加坡科技设计大学教授刘晓刚合作,在前期获得高荧光强度和光稳定性系列新型荧光染料的基础上,发现了一种新型的光诱导分子内电荷转移机制,命名为分子内扭转电荷穿梭。该机制的发现进一步推进了分子水平上对光诱导电荷转移机制的理解,在光电转换、光催化等领域将具有重要价值。 

有机电荷转移分子调控二维材料电学特性研究取得进展

  近日,中国科学院微电子研究所在有机电荷转移分子调控二维材料电学特性研究中取得新进展。  薄层过渡金属二硫化物(TMDCs)以其独特的电学、光电、机械和磁学特性为探索低维系统中的新物理特性和应用途径提供了一个新的平台。其中,在场效应晶体管应用中,少层二硫化钼(MoS2)可以突破传统半导体材料的短沟

表面增强拉曼光谱可研究纳米缝隙分子层的电荷转移效应

近场光学是光学领域的一个新型交叉学科,在生物医学成像、数据存储、单分子光谱、量子器件等领域有着广泛的潜在应用。当金属纳米材料之间的缝隙逐渐减小至亚纳米级别时,缝隙中的分子层可能会发生电荷转移现象并影响纳米材料的远场和近场光学属性。以往的研究主要集中于电荷转移对远场光学属性的影响,而对近场光学属性的研

电荷载流子的定义

中文名称电荷载流子英文名称charge carrier定  义在半导体中移动(自由)导电的电子或移动的空穴。应用学科机械工程(一级学科),仪器仪表材料(二级学科),半导体材料(仪器仪表)(三级学科)

通过调控扭转分子内电荷转移设计高亮度和高敏感荧光团

  近日,我所分子探针与荧光成像研究组(1818组)徐兆超研究员团队与新加坡科技设计大学刘晓刚教授团队合作发表综述文章,总结了近年来通过调控扭转分子内电荷转移设计高亮度和高敏感荧光团的工作。  针对生物单分子检测和超高时空动态分辨荧光成像的前沿需求,设计高亮度、高光稳定和环境敏感的荧光染料是近年来的

我学者揭示分子激发态对称性破坏电荷分离动力学机理

  在由电子供体(D)和受体(A)构成的有机太阳能电池(OPV)中,光诱导界面激子电荷分离(CS)产生的自由载流子的效率在能量转换中起着重要作用。然而界面激子分离通常由于电子和空穴之间较强的库仑作用而受到抑制,因此减少激子中电子和空穴之间的库伦势对于优化OPV的效率至关重要。强耦合的DA体系往往因为

美国研制出超快LED-打破荧光分子发射光子速度纪录

  国杜克大学研究人员最新研制出超快发光二极管(LED),打破了荧光分子发射光子的速度纪录,是普通级的1000倍,朝着实现超快速LED和量子密码学迈出了重要一步。该研究结果刊登在10月12日的《自然·光子学》在线版上。  今年的诺贝尔物理学奖被授予在20世纪90年代初发明的蓝色发光二极管的科学家,因

蛋白在凝胶上移动速度为什么跟分子量有关

这个和凝胶过滤的介质结构有关,凝胶填料是某些惰性的多孔网状结构物质,多是交联的聚糖如葡聚糖或琼脂糖类物质。当小分子物质能进入其内部,流下时路程较长,而大分子物质却被排除在外部,下来的路程短,所以蛋白在凝胶上移动速度跟分子量有关系。

这项研究能看清活细胞里分子运动速度的快慢

  生命在于运动。不仅我们人类需要每天通过运动来增强体质,我们体内所有的生物大分子也无时无刻不以运动来维持生命的运转。  在生物体内,分子的运动速度是用扩散速率来表征。它能提供例如细胞活性,反应速率以及大分子相互作用等重要信息。  长期以来,活细胞内生物大分子的扩散速率通常使用经典光学方法例如荧光相

半导体间电荷传输方向

  2008年德国慕尼黑大学的Dieter Gross等人通过荧光技术,证明了TypeII型CdTe和CdSe半导体纳米晶复合材料具有高效的电荷分离效率,同时间接的证明了Type II型异质结的电荷分离方向。(NanoLett., 2008, 8 (5), pp 1482–1485)  2010年在

乳化沥青电荷试验仪简介

简介:适用于测定各类乳化沥青微粒离子的电荷性质,即阳、阴离子的类型。乳化沥青电荷试验仪参数:★电源电压:直流6V。★最大输出负载:30mA。★定时精度:0.1秒。★定时时间3min。★电源电压:220V。★外形尺寸:300X200X300mm。★重量:10KG。★功率:200W。★环境温度:5~40

中心离子电荷数的影响

对于过渡元素的八面体看配合物来说,中心离子的电荷不同,取代反应的速率会有很大的差别。一般来说,中心离子的电荷数越高,取代反应越慢。例如,同属于d8构型的Cr3+合V2+以及同属于d5构型的Co3+合Fe2+,其三价金属离子的配合物与三价相比,取代反应就要慢得多。对于过渡非金属的八面体配合物,也有类似

电荷量和电阻的关系

两个串联电阻分别的电荷量与流过它们总电荷量的关系是相等关系。电荷量简称电荷,是物体所带电荷的量值,电量的国际单位是库仑,符号C,任何带电体所带电量总是等于某一个最小电量的整数倍,这个最小电量叫作基元电荷,也称元电荷。导体对电流的阻碍作用就叫该导体的电阻。电阻通常用“R”表示,是一个物理量,在物理学中

振动温度变送器(速度加速度)

一体化振动温度变送器防爆等级ExiaII BT6 Ga,通过PT100铂电阻采集温度,输出4-20mA电流信号,振动量的采集是通过压电式传感器,采用进口检波器,抗干扰能力强,满量程线性一致高。输出4-20mA电流信号,稳定可靠,外壳采用不锈钢材料,抗腐蚀性强。一体振动温度变送器温度,采用振动与温度独

振动温度变送器(速度加速度

一体化振动温度变送器防爆等级ExiaII BT6 Ga,通过PT100铂电阻采集温度,输出4-20mA电流信号,振动量的采集是通过压电式传感器,采用进口检波器,抗干扰能力强,满量程线性一致高。输出4-20mA电流信号,稳定可靠,外壳采用不锈钢材料,抗腐蚀性强。一体振动温度变送器温度,采用振动与温度独

一种新的分子方法让癌细胞放慢了生长速度

  德国Hopp儿童癌症中心是由德国海德堡大学附属医院和德国癌症研究中心(DKFZ)共同创建的,近期这一癌症中心的研究人员研发了一种新的分子方法,能用于治疗以往难以治疗的儿童脑癌形式:室管膜瘤(ependymoma)。这一研究成果公布在12月20日的Nature杂志上。  室管膜瘤是第三大最常见的儿

过滤速度

过滤速度  悬浮液中的固体颗粒大、粒度均匀时,过滤的滤渣层孔隙较为畅通,滤液通过滤渣层的速度较大。应用凝聚剂将微细的颗粒集合成较大的团块,有利于提高过滤速度。  对于固体颗粒沉降速度快的悬浮液,应用在过滤介质上部加料的过滤机,使过滤方向与重力方向一致,粗颗粒首先沉降,可减少过滤介质和滤渣层的堵塞;在

电荷流分离法的概念

中文名称电荷流分离法英文名称charge flow separation;CFS定  义利用细胞表面的电荷不同,在电场力的作用下有不同的迁移速度而达到分离细胞目的的方法。是近年来发展起来的一种较新的方法,可以区分不同的细胞类型,而且分离迅速,被分离的细胞有活性,分离过程不需要抗体。应用学科细胞生物学

简述中心离子电荷数的影响

  对于过渡元素的八面体看配合物来说,中心离子的电荷不同,取代反应的速率会有很大的差别。一般来说,中心离子的电荷数越高,取代反应越慢。例如,同属于d8构型的Cr3+合V2+以及同属于d5构型的Co3+合Fe2+,其三价金属离子的配合物与三价相比,取代反应就要慢得多。  对于过渡非金属的八面体配合物,

电荷流分离法的特点

中文名称电荷流分离法英文名称charge flow separation;CFS定  义利用细胞表面的电荷不同,在电场力的作用下有不同的迁移速度而达到分离细胞目的的方法。是近年来发展起来的一种较新的方法,可以区分不同的细胞类型,而且分离迅速,被分离的细胞有活性,分离过程不需要抗体。应用学科细胞生物学