Antpedia LOGO WIKI资讯

中心离子电荷数的影响

对于过渡元素的八面体看配合物来说,中心离子的电荷不同,取代反应的速率会有很大的差别。一般来说,中心离子的电荷数越高,取代反应越慢。例如,同属于d8构型的Cr3+合V2+以及同属于d5构型的Co3+合Fe2+,其三价金属离子的配合物与三价相比,取代反应就要慢得多。对于过渡非金属的八面体配合物,也有类似的情况,如PF8-、SbF6-、AsF6-等配合物显示惰性,而AlF63-则显示活性。这是因为中心离子电荷高,对配位体吸引得很牢固,使取代反应难以进行。......阅读全文

中心离子电荷数的影响

对于过渡元素的八面体看配合物来说,中心离子的电荷不同,取代反应的速率会有很大的差别。一般来说,中心离子的电荷数越高,取代反应越慢。例如,同属于d8构型的Cr3+合V2+以及同属于d5构型的Co3+合Fe2+,其三价金属离子的配合物与三价相比,取代反应就要慢得多。对于过渡非金属的八面体配合物,也有类似

质谱分析法术语--电荷数

电荷数(chargenumber)以电子电量e去除离子的总电荷q得到的值。其整数值用z表示,z=q/e。

ICP-MS的干扰——双电荷离子干扰

双电荷离子干扰双电荷离子产生的质谱干扰是单电荷离子M/Z的一半,例如138Ba2+对69Ga+,或208Pb2+对104Ru+。这类干扰是比较少的,而且可以在进行分析前将系统最佳化而有效地消除。

迄今最稳定三电荷负离子现身

  记者20日从北京大学物理系王前教授处获悉,著名期刊《应用化学》杂志以封面文章形式刊登了以王前为通讯作者、其博士生赵天山为第一作者的重要论文:他们利用全新方法,发现了迄今最稳定的三电荷负离子结构。《应用化学》杂志称,这一研究将跻身最重大化学研究成果行列,未来将在电池、空气净化等多个领域展示无穷的应

ICPMS为什么要调谐双电荷离子

是检测离子化程度, 双电荷超标说明电离度或等离子体温度过高,

质谱分析法术语--多电荷离子

多电荷离子(multiple charged ion)带有两个以上电荷的离子,通常多电荷离子具有非整数质荷比,出现在质谱图的分数质量上,形成“本底”。

中心离子的分类

从中心离子的电子结构可以了解它们与有机试剂的络合物形成及稳定性,金属离子的电子结构不同,它的离子势(离子电荷z与离子半径r的比值)也不同,反映出的与配位体的络合能力也不同.根据中心离子与配位原子0,N,S的配位能力,按中心离子电子结构把金属离子分成三组.第一组具有惰性气体电子结构的金属离子(外层轨道

硬脂酸镁含量对乳糖产品电荷的影响

硬脂酸镁含量对乳糖产品电荷的影响一、介绍1、概论颗粒状材料和精细粉体在工业上有着广泛的应用,为了控制和优化加工方法,必须对这些材料进行精确表征。表征方法既与颗粒的性质(粒度、形态、化学成分等)有关,也与粉体的行为(流动性、密度、共混稳定性、静电性能等)有关。然而,关于散装粉末的物理性能,大多数在研发

硬脂酸镁含量对乳糖产品电荷的影响分析

硬脂酸镁含量对乳糖产品电荷的影响一、介绍1、概论颗粒状材料和精细粉体在工业上有着广泛的应用,为了控制和优化加工方法,必须对这些材料进行精确表征。表征方法既与颗粒的性质(粒度、形态、化学成分等)有关,也与粉体的行为(流动性、密度、共混稳定性、静电性能等)有关。然而,关于散装粉末的物理性能,大多数在研发

通过离子电荷滴定控制碳纳米管的功能化效率

  图1:碳纳米管   介绍 许多微粒系统取决于颗粒悬浮体系的稳定性和再分散能力,而它的PH范围不能太过局限。一种达到稳定性的方法为通过适当的离子端基修饰改变它的界面。越高的离子电荷密度,单个颗粒间的排斥力就越高,从而可以克服范德华吸引力。离子排斥可以通过静电学的颗粒界面电势(PIP)和