什么是相干光通信?(一)

☑ 为什么在骨干网,长距传输上选择了相干光通信?☑ 了解相干光通信之前所需的知识储备☑ QPSK,QAM等复杂调制格式具体实现的方式 在光通信行业里,我们经常听到400G和100G传输,而相干光通信和PAM4传输技术在数据中心及网络基础设施中是当下实现这两种速率的主要技术方向。按照这两种技术各自的优势,它们分别在线路侧骨干网传输和客户侧模块发挥着各自的优势。PAM4传输技术之前小K普及过很多次了,那么相干又怎么理解呢? 从传输技术来看,有三个维度可以用来增加传输的信息量: 更高符号速率 10 GBaud/s → 25 GBaud/s → 56G Baud/s……; 更多并行通道数 波分复用或者多路光纤1x → 4x → 8x → 32x……; 高阶复杂调制 如 PAM-4,......阅读全文

什么是相干光通信?(一)

☑  为什么在骨干网,长距传输上选择了相干光通信?☑  了解相干光通信之前所需的知识储备☑  QPSK,QAM等复杂调制格式具体实现的方式 在光通信行业里,我们经常听到400G和100G传输,而相干光通信和PAM4传输技术在数据中心及网络基础设施中是当下实现这两种速率的主要技术方向。按照这两种技术各

什么是相干光通信?(二)

I/Q调制在下图用极坐标描述,这里,I为in-phase同相或实部,Q为quadrature正交相位或虚部,如图(6)所示蓝色矢量端点的位置对应一个点 (也称为“星座点”)在这个图中(这被称为“星座图”),这个点其实就是振幅E和相位Ф的一对组合。 图(6)   I/Q调制听起来有个蛮高大上的名字,那

星地高速相干激光通信实验成功完成在轨测试

  2016年8月16日,由中国科学院上海光机所牵头研制的星地高速相干激光通信实验载荷搭载量子卫星成功发射。2016年12月28日至2017年1月15日,高速相干激光通信载荷开展了首轮星地双向激光通信试验。本次试验是国内首次在轨相干激光通信试验,实现了在星地链路距离1000km以上、低仰角(20度左

什么是相干光和非相干光

两束满足相干条件的光称为相干光,在光学上,相干光是指“在时间或空间的任意点上,特别是在垂直于光的传播方向的平面上的一个区域内,或在空间的一个特定点的所有时间里,光的所有参数都可以预测并相关的光”。非相干光其相位无规则变化。获得相干光源的方法:波阵面分割法将同一光源上同一点或极小区域(可视为点光源)发

什么是光通信?

光通信就是以光波为载波的通信。

相干探测的定义

中文名称相干探测英文名称coherent detection定  义相干的激光信号和本机激光振荡信号在满足波前匹配的条件(即在整个激光探测器的光敏表面上保持相同的相位关系)下,一起入射到探测器光敏表面上,产生拍频或相干叠加,探测器输出电信号大小正比于待测激光信号波和本机激光振荡波之和的平方的探测方式

什么是非相干成像

非相干成像是相对于相干成像而言的。相干成像是使用相干光源(如激光)成像,也叫全息成像。我们常规的成像手段,可以记录包括颜色(波长),光强的二维影像。而全息成像技术可以记录光的相位,这样的话在再现的过程中,可以看到物体在三维空间的影像。但是一般的全息成像手段,由于光源和系统色散的限制,成像多为单色。

相干探测的概念

中文名称相干探测英文名称coherent detection定  义相干的激光信号和本机激光振荡信号在满足波前匹配的条件(即在整个激光探测器的光敏表面上保持相同的相位关系)下,一起入射到探测器光敏表面上,产生拍频或相干叠加,探测器输出电信号大小正比于待测激光信号波和本机激光振荡波之和的平方的探测方式

激光通信的应用

激光通信的应用主要有以下几个方面:1、地面间短距离通信;2、短距离内传送传真和电视;3、由于激光通信容量大,可作导弹靶场的数据传输和地面间的多路通信。4、通过卫星全反射的全球通信和星际通信,以及水下潜艇间的通信。

激光通信的作用

激光通信是一种利用激光传输信息的通信方式。激光是一种新型光源,具有亮度高、方向性强、单色性好、相干性强等特征。按传输媒质的不同,可分为大气激光通信和光纤通信。大气激光通信是利用大气作为传输媒质的激光通信。光纤通信是利用光纤传输光信号的通信方式。

激光通信的优点

(1)通信容量大。在理论上,激光通信可同时传送1000万路电视节目和100亿路电话。(2)保密性强。激光不仅方向性特强,而且可采用不可见光,因而不易被敌方所截获,保密性能好。(3)结构轻便,设备经济。由于激光束发散角小,方向性好,激光通信所需的发射天线和接收天线都可做的很小,一般天线直径为几十厘米,

华中科技大学张新亮团队Nature-Commun.

  8月20日,《自然·通讯》(Nature Communications)在线发表了华中科技大学武汉光电国家研究中心、光学与电子信息学院张新亮教授、叶镭副教授与国家信息光电子创新中心肖希博士合作研究成果:超高速石墨烯相干光接收机“Ultrahigh-speed graphene-based opt

光电所在基于光纤器件的相干偏振合成研究方面取得进展

  日前,中国科学院光电技术研究所自适应光学重点实验室李新阳、耿超课题组在相干偏振合成技术研究中取得新进展:提出了基于光纤器件的相干偏振合成技术,分别采用相位控制和偏振控制的方法实现了高效的光纤内相干偏振合成。该技术基于全保偏光纤器件,无需考虑空间误差的影响,系统稳定性高、可靠性好、易于与其他光纤器

非相干探测的定义

中文名称非相干探测英文名称non-coherent detection定  义激光探测器将入射到其光敏表面的激光信号转换为电信号,且大小正比于入射光子流瞬时强度的探测方式。应用学科机械工程(一级学科),光学仪器(二级学科),激光器件和激光设备-激光技术(三级学科)

非相干探测的定义

中文名称非相干探测英文名称non-coherent detection定  义激光探测器将入射到其光敏表面的激光信号转换为电信号,且大小正比于入射光子流瞬时强度的探测方式。应用学科机械工程(一级学科),光学仪器(二级学科),激光器件和激光设备-激光技术(三级学科)

非相干探测的定义

中文名称非相干探测英文名称non-coherent detection定  义激光探测器将入射到其光敏表面的激光信号转换为电信号,且大小正比于入射光子流瞬时强度的探测方式。应用学科机械工程(一级学科),光学仪器(二级学科),激光器件和激光设备-激光技术(三级学科)

非相干探测的定义

中文名称非相干探测英文名称non-coherent detection定  义激光探测器将入射到其光敏表面的激光信号转换为电信号,且大小正比于入射光子流瞬时强度的探测方式。应用学科机械工程(一级学科),光学仪器(二级学科),激光器件和激光设备-激光技术(三级学科)

什么是光学相干成像

  光学相干断层成像术(optical coherence tomography,OCT)是一种能对生物组织浅表微结构进行断层成像的新技术,我们对时域光学相干断层成像术(time domain optical coherence tomography,TDOCT)与傅立叶域光学相干断层成像术(fo

相干性的定义

相干性 (coherence) 是指为了产生显著的干涉现象,波所需具备的性质。更广义地说,相干性描述波与自己波、波与其它波之间对于某种内秉物理量的关联性质。相干性又大致分类为时间相干性与空间相干性。时间相干性与波的线宽有关;而空间相干性则与波源的有限尺寸有关。

光通信的定义和方式

 光通信就是以光波为载波的通信。增加光路带宽的方法有两种:一是提高光纤的单信道传输速率;二是增加单光纤中传输的波长数,即波分复用技术(WDM)事实上,光通信设备只适合在最后几公里的距离用。

激光通信的技术特点

激光通信是一种利用激光传输信息的通信方式。激光是一种新型光源,具有亮度高、方向性强、单色性好、相干性强等特征。按传输媒质的不同,可分为大气激光通信和光纤通信。大气激光通信是利用大气作为传输媒质的激光通信。光纤通信是利用光纤传输光信号的通信方式。

激光通信的技术缺陷

(1)通信距离限于视距(数公里至数十公里范围),易受气候影响,在恶劣气候条件下甚至会造成通信中断。大气中的氧、氮、二氧化碳、水蒸汽等大气分子对光信号有吸收作用;大气分子密度的不均匀和悬浮在大气中的尘埃、烟、冰晶、盐粒子、微生物和微小水滴等对光信号有散射作用。云、雨、雾、雪等使激光受到严重衰减。地球表

激光通信的系统组成

激光通信系统组成设备包括发送和接收两个部分。发送部分主要有激光器、光调制器和光学发射天线。接收部分主要包括光学接收天线、光学滤波器、光探测器。要传送的信息送到与激光器相连的光调制器中,光调制器将信息调制在激光上,通过光学发射天线发送出去。在接收端,光学接收天线将激光信号接收下来,送至光探测器,光探测

激光通信系统组成特点

激光通信系统组成设备包括发送和接收两个部分。发送部分主要有激光器、光调制器和光学发射天线。接收部分主要包括光学接收天线、光学滤波器、光探测器。要传送的信息送到与激光器相连的光调制器中,光调制器将信息调制在激光上,通过光学发射天线发送出去。在接收端,光学接收天线将激光信号接收下来,送至光探测器,光探测

激光通信的技术缺陷

(1)通信距离限于视距(数公里至数十公里范围),易受气候影响,在恶劣气候条件下甚至会造成通信中断。大气中的氧、氮、二氧化碳、水蒸汽等大气分子对光信号有吸收作用;大气分子密度的不均匀和悬浮在大气中的尘埃、烟、冰晶、盐粒子、微生物和微小水滴等对光信号有散射作用。云、雨、雾、雪等使激光受到严重衰减。地球表

光通信技术的发展现状

 对光通信来说,其技术基本成熟,而业务需求相对不足。以被誉为“宽带接入最终目标”的FTTH为例,其实现技术EPON已经完全成熟,但由于普通用户上网需要的带宽不高,使FTTH的商用只限于一些试点地区。但是,在2006年,随着IPTV等三重播放业务开展,运营商提供的带宽已经不能满足用户对高清晰电视的要求

激光通信的技术优势

大气激光通信可传输语言、文字、数据、图像等信息。激光通信的优点是:(1)通信容量大。在理论上,激光通信可同时传送1000万路电视节目和100亿路电话。(2)保密性强。激光不仅方向性特强,而且可采用不可见光,因而不易被敌方所截获,保密性能好。(3)结构轻便,设备经济。由于激光束发散角小,方向性好,激光

电子天平相干基础常识

  1 大称量Max :电子(electronic)天平(Electronic)称大可以显示的分量值; 小称量Min:电子天平能够到达正确度规范的小分量值。分析天平是准确称量一定质量物质的仪器。称量前应检查天平是否正常,是否处于水平位置,吊耳、圈码是否脱落,玻璃框内外是否清洁。被称的分量应大于小称量

相干性的基本介绍

振动频率相同、相差恒定的叫做相干性。两个波彼此相互干涉时,因为相位的差异,会造成相长干涉或相消干涉。假若两个正弦波的相位差为常数,则这两个波的频率必定相同,称这两个波“完全相干”。两个“完全不相干”的波,例如白炽灯或太阳所发射出的光波,由于产生的干涉图样不稳定,无法被明显地观察到。在这两种极端之间,

石墨烯芯片光通信技术取得突破

  爱迪生在发明灯泡时,最初是使用碳作为灯丝,一个由美国哥伦比亚大学、韩国首尔国立大学和韩国标准科学研究院研究人员组成的国际团队又回到同一种元素,他们首次展示了用只有一个碳原子厚度的石墨烯作为灯丝的可见光源:细条状石墨烯灯丝与金属电极相连,悬挂在基底上方,当电流通过时灯丝就会受热发光。这项研究发表在