发布时间:2017-08-21 18:01 原文链接: Cell:值得一看!一张图全面了解衰老

  细胞衰老是一种基本的细胞命运,扮演着重要的生理学和病理生理学角色。8月10日,Cell杂志发表了一个题为“Cellular Senescence Pathways”的SnapShot。这一SnapShot聚焦了与衰老相关的主要信号通路以及转录控制机制。具体见下图(分上中下三个部分):

  导致衰老的压力/刺激包括复制耗竭(replicative exhaustion)造成的端粒缩短、致癌基因超活化、肿瘤抑制因子损失、DNA或染色质结构损伤、发育刺激、线粒体功能紊乱、重编程因子、氧化应激、伤口愈合、细胞-细胞融合(cell-cell fusion)以及某些细胞因子。

  衰老阻滞(Senescence arrest)主要发生在细胞周期的G1期,有别于G0阻滞(G0-arrested)的休眠细胞。衰老阻滞是由细胞周期蛋白依赖性激酶抑制剂(cyclin-dependent kinase inhibitor)介导的,依赖于TP53和pRB肿瘤抑制通路。

  典型的衰老生物标志物是酸性溶酶体SA-ßGal的活性。衰老细胞在染色质结构上发生了变化,表现为衰老相关的异染色质聚集(senescence-associated heterochromatin foci,SAHF)等现象。这些聚集的形成依赖于CDKN2A-pRB通路。

  衰老细胞中持续的DNA损伤响应(DNA damage response,DDR)导致了衰老DNA损伤聚集(senescence DNA damage foci,SDF)和端粒功能紊乱诱导的聚集(telomere-dysfunction-induced foci,TIF)。SDF 和TIF是通过DDR相关的蛋白质(53BP1、 γH2AX和ATM)的共定位被鉴定出来的。

  衰老与线粒体代谢活动比率增加有关,包括三羧酸循环、氧化磷酸化和糖酵解途径。衰老细胞增加了AMP/ADP:ATP和 NAD+/NADH的比率,激活了AMPK,进而增强了TP53依赖性细胞周期阻滞。

  此外,衰老细胞表现出增加的蛋白质转换以及巨大的蛋白质毒性压力,同时,它们的细胞外基质组织也发生了显著变化。

  中图:细胞周期阻滞的调节

  大部分衰老诱导因子会激活肿瘤抑制通路TP53/CDKN1A 和(或)pRB/CDKN2A。其中,遗传毒性物质或活性氧造成的DNA损伤通过p38MAPK 和ATM激活了TP53。功能失调的线粒体和其它代谢紊乱也通过激活AMPK诱导了TP53依赖的阻滞。

  在衰老期间,E2F7和pRB会抑制促增殖的基因。E2F7是一个TP53靶基因,也是在衰老中唯一被强烈上调的E2F转录因子家族成员。pRB的活性被CDK介导的磷酸化严格调控。在衰老中,CDK抑制剂(如CDKN2A or −1A)使pRB维持在去磷酸化状态,促进衰老阻滞。

  在增殖的细胞中,INK4位点(编码CDKN2A, -2B和p14ARF)通过lncRNA ANRIL介导的PRC1/2招募,被维持在一个抑制的染色质状态,促进了抑制性的组蛋白甲基化。而在衰老和老化的过程中,研究人员观察到了CDKN2A基因的转录激活以及CDKN2A水平的增加。因此,它现在被认为是衰老的一个生物标志物。p14ARF蛋白也通过稳定TP53的水平来促进衰老。

  衰老相关分泌表型(senescence-associated secretory phenotype,SASP)的诱导依赖于炎性的TFs NF-κB和C/EBPß的激活、慢性的DNA损伤响应以及p38MAPK通路。许多SASP基因的顺式调控区域包括NF-κB和C/EBPß结合位点。在对DNA损伤的响应中,DDR激活的PARP1-NF-κB轴诱导了CCL2主导的炎性SASP的表达。DDR驱动的衰老通过抑制GATA4的降解使其保持稳定,这反过来导致了NF-κB的激活和炎性细胞因子的转录。此外,NF-κB通路也可以通过RIG-I和IRF途径激活。

相关文章

喝酒脸红的人,更容易衰老

日本名古屋大学的研究人员发现,醛是与过早衰老有关的代谢副产物。近日,他们的研究结果发表在《自然—细胞生物学》上,揭示了对早衰疾病的深入见解,以及健康个体在对抗衰老方面的潜在策略,例如控制接触酒精、污染......

南大科学家发现“返老还童”因子

南京大学生命科学学院教授张辰宇、陈熹、王延博,医学院教授方雷等人通过研究揭示了一项重大发现:年轻血液中的小细胞外囊泡(sEVs)具有显著延长寿命、恢复整体生理功能以及逆转与年龄相关的退化变化的能力。4......

Cell子刊|研究发现怀孕会加速衰老

怀孕的状态施加相当大的生理压力在产妇。基于这一观察,怀孕被认为是一种自然的挑战,可能会揭示与未来疾病风险相关的潜在压力相关的脆弱性。然而,目前还缺乏一种生物标志物来衡量怀孕造成的总体生理损失。&nbs......

NatureAging揭示衰老脂质变化规律,提出逆龄策略

脂质在生物体内具有多种多样的功能,可作为信号分子、能量储存分子和细胞膜组分。这些功能涉及哺乳动物细胞中数千种脂质,脂质代谢失调与多种疾病相关,如动脉粥样硬化、癌症、非酒精性脂肪性肝炎和慢性肾病等。以往......

度量衰老,科学家创建中国人复合DNA甲基化时钟

时间如梭,衰老是自然界不可抗拒的规律,但衰老的步伐并非一成不变——即使在同龄人之间,生理功能的衰退和器官老化的程度也存在显著差异。这些差异性说明个体的生物学年龄,即生理状态所反映的年龄,可能与其实际年......

度量衰老,科学家创建中国人复合DNA甲基化时钟

时间如梭,衰老是自然界不可抗拒的规律,但衰老的步伐并非一成不变——即使在同龄人之间,生理功能的衰退和器官老化的程度也存在显著差异。这些差异性说明个体的生物学年龄,即生理状态所反映的年龄,可能与其实际年......

大脑衰老最易受3种危险因素影响

人脑中有一个“弱点”,这是一个特定的高阶区域网络,不仅在青春期后期发育,而且在老年时也表现出较早的退化。发表在《自然·通讯》上的一项新研究发现,这个大脑网络特别容易受到精神分裂症和阿尔茨海默病的影响。......

CancerCell:激活维A酸受体,可重编程衰老反应,增强NK细胞抗肿瘤活性

前列腺癌(PCa)是全球男性的第二大癌症相关死亡原因(仅次于肺癌)。标准化疗只能略微改善前列腺癌患者的整体生存率,为对雄激素剥夺疗法无效的患者提供姑息性益处。之前的研究表明,促进衰老的治疗可以初步抑制......

微自噬机制对预防衰老至关重要

据最新发表在《EMBO报告》上的一项研究报道,日本大阪大学和奈良县立医科大学的研究人员首次证明,受损的溶酶体可通过微自噬机制修复,并确定了这一过程的两个关键调控因素,这对于预防衰老至关重要。为确定新的......

研究揭示逆转心脏衰老的关键蛋白

中国科学院动物研究所刘光慧课题组、曲静课题组,联合北京基因组研究所张维绮课题组,在《自然-衰老》(NatureAging)上,在线发表了题为SIRT2counteractsprimatecardiac......