发布时间:2019-04-27 08:02 原文链接: FlowCellAssayswithMicrotubules:Motility/DynamicsinFluorescence

Flow cell assays are very useful for studying microtubule motility, microtubule dynamics, kinetochore-microtubule interactions and action of severing/depolymerizing factors on microtubules. Described here are some general procedures for flow cell assays.




Back to protocols



I. Solutions & Supplies


BRB80 (1X): 80 mM PIPES, 1 mM MgCl2, 1 mM EGTA, pH 6.8 with KOH (generally made as a 5X stock and stored at 4¡C)

5 mg/ml casein (Sigma C-5890; dissolve at 10-20 mg/ml in 20 mM Tris, pH 8.0, on a rotator in coldroom for several hours; spin at 70K in TLA100.4 and collect clear middle layer. Measure protein concentration by Bradford using BSA as a standard and dilute to 5 mg/ml. This can be filtered if desired then aliquoted and stored at -20¡C or -80¡C)

10 mg/ml HSA or high purity BSA in 1XBRB80; store at -20¡C or -80¡C (HSA = Human Serum Albumin)

Oxygen Scavengers (see below)

Flow Cells: Flow cells can be constructed in many different ways. The most common way is to place two strips of double-stick tape on a glass slide ~7-10 mm apart and cover with a 18x18 or 22x22 mm coverslip. This results in a ~12-15 µl flow cell. Solutions are pipeted on one side and sucked out the other side by capillary action using Whatman #1 filter paper or a Kimwipe. Washes in flow cells should be ~4-8 chamber volumes and it is important to work in the middle of the cell (i.e. to avoid working close to the tape edge, where flow is not laminar resulting in poor washes/solution transfers).

For VE-DIC (video-enhanced differential interference contrast microscopy) coverslips must be cleaned thoroughly before use. We find that treating coverslips with acetone for 15'-30', followed by ethanol for 15', and then spin drying them works well for VE-DIC. Other labs use far more extensive and excruciating cleaning procedures. For fluorescence assays coverslips can be used straight from a box. In both cases, the coverslip surface is generally treated in some way depending on the precise assay requirement, e.g., the surface is coated with casein prior to adsorbing motor proteins for motility assays. For fluorescence assays, oxygen scavenging is essential and a glucose oxidase/catalase/glucose system works very well for this purpose.

Axonemes (for dynamics assays)



II. VE-DIC Assays


A. Motility

Described here is a simple protocol for assaying kinesin motility by VE-DIC. Variations on this type of assay have been used to demonstrate motility of other MT motor proteins. This assay does not provide polarity information on the motility. Although there are methods for making polar microtubule substrates for DIC, we generally usefluorescent polarity marked taxol-stabilized microtubules to determine polarity, as described later.


1. Coat flow cell with a mixture of 0.25 mg/ml casein and kinesin (5-50 µg/ml) for 3'..

2. Rinse out unbound material with 80 µl BRB80 + 1 mM DTT + 1 mM MgATP + 10 µM taxol.

3. Transfer flow cell to microscope and setup DIC imaging.

6. Flow in 30 µl 10 ug/ml taxol-stabilized microtubules (unlabeled) sheared to ~5-10 µm length. The taxol-stabilized microtubules are diluted from a 1-2 mg/ml stock into BRB80 + 1 mM DTT + 1 mM MgATP + 1 mg/ml HSA + 10 µM taxol. After a reasonable density of microtubules have attached to the surface and started translocation, wash out unbound microtubules using 30 µl BRB80 + 1 mM DTT + 1 mM MgATP + 10 µM taxol (optional) and record motility. Once the reaction conditions are well-established, incubation with microtubules and removal of unbound microtubules can be done prior to transferring the flow cell to the microscope.


B. Dynamics

VE-DIC revolutionized analysis of microtubule dynamics by allowing observation of single dynamic microtubules in real-time. We have used VE-DIC for measuring dynamics of both pure tubulin and microtubules in clarified Xenopus egg extracts. We use axonemes as nucleators of microtubule assembly. The axonemes are adsorbed to the flow cell surface prior to flowing in tubulin. Dynamics measurements are generally performed in regimes where spontaneous nucleation is minimal -- thus, one can assume that the amount of polymer formed in the assay is miniscule and the monomer concentration is not changing during the observation. Care must be taken to ensure that this assumption is valid since depletion of monomer will affect the measured parameters of dynamics.


1. Coat a clean coverslip flow cell with axonemes and allow adsorption for 5' (adjust concentration and time of adsorption such that density is ~1-3 per field-of-view on the monitor).

2. Wash out unbound axonemes with 80 µl of BRB80 + 1 mM DTT + 1 mM GTP + 0.5 mg/ml HSA

3. Flow in at least 3-4 chamber volumes of tubulin mix (i.e. tubulin in BRB80 + 1 mM DTT + 1 mM GTP + 0.5 mg/ml HSA), seal edges with Valap (1:1:1 mix of vaseline:lanolin:paraffin) and begin observation. To avoid surface effects, dynamics are measured by following microtubule ends growing down into the flow cell away from the coverslip surface -- these ends exhibit brownian motion in a focal plane below the coverslips surface as they polymerize/depolymerize.

For mammalian tubulins, the temperature is raised to 35-37¡C during observation. We have done this using warm air blowers or by wrapping the high NA condenser and objectives with thin silicone tubing through which hot water is circulated -- the temperature of the water is empirically adjusted such that the temperature of the immersion oil on the coverslip surface is 35-37¡C (measured using a thermocouple probe). A variety of home-rigged schemes for controlling temperature on the microscope stage have been developed in different labs.

For assaying dynamics of microtubules in Xenopus egg extracts, we simply flow ~50 µl of extract through a flow cell with adsorbed axonemes and then seal the cell with Valap. The high protein concentration of the extract eliminates need for blocking the coverslip surface.



III. Fluorescence Assays


A. Oxygen Scavenging:

For live fluorescence microscopy it is essential to scavenge oxygen in order to limit photodamage. The most convenient method for doing this is using a glucose oxidase/glucose/catalase mix (OS mix). The component enzymes are stored as 100X stocks at -80¡C and thawed and used for ~2 hours after mixing. It is important to keep the OS mix in a sealed tube on ice. The principle by which the mix scavenges oxygen is as follows:

catalase: H2O + O2------->H2O2


glucose oxidase: D-glucose + H2O2 ------->D-glucono-1,4-lactone


A1. 100X Stock Solutions:

Glucose: 450 mg/ml in ddH2O (~ 2.25 M)

2-mercaptoethanol: 50% (~ 7.15M; dilute from stock before use)

Glucose Oxidase: 20 mg/ml (Sigma G-2133)

Catalase: 3.5 mg/ml (Sigma C-40)


The glucose oxidase and catalase are made up in 12 mM K-PIPES, pH 6.8, 2 mM MgCl2, 1 mM EGTA, frozen in 20-50 ul aliquots in liquid nitrogen and stored at -80¡C. We find it most convenient to prepare the glucose stock along with the glucose oxidase and catalase stocks, and store all three stock solutions in different colored tubes at -80¡C.


A2. Using OS Mix:

1. Thaw 100X stocks of glucose, glucose oxidase and catalase and store on ice. Prepare a 50% (v/v) 2-mercaptoethanol stock solution on ice.

2. Make a 10X OS Mix on ice: (the following recipe is for 50 µl)


30 µl BRB80 (0¡C)

5 µl of glucose oxidase, catalase, 2-mercaptoethanol and glucose stocks


Add glucose last, after mixing the other components, and store the 10X OS Mix in a sealed tube on ice (i.e. do not leave top open). Keep the tube on ice and ensure that temperature of solution to which the OS Mix is added only increases and does not decrease. Prepare a fresh 10X stock after ~2 hours for optimal results. Add 1/9 vol of the 10X OS to the solutions used for washing flow cells so that the sample is well equilibrated with 1X OS mix prior to observation. Using this recipe, kinesin motility can be recorded with an unshuttered/unattenuated mercury arc for >15'.


B. Assays

Motility assays in fluorescence are generally performed with polarity marked taxol-stabilized microtubules (see page 187) to determine the polarity of the assayed motor protein. Kinetochore-microtubule interaction, microtubule severing and microtubule depolymerization assays have also relied heavily on fluorescence microscopy combined with flow cell technology. It is important to be aware that fluorescence assays are subject to photodamage artifacts, especially if oxygen scavenging is not done properly, and also that the oxygen scavenging mix may affect the property being assayed (this is a real concern for measuring microtubule dynamics using fluorescence). Described below is a kinesin motility assay with polarity marked taxol microtubules.


1. Coat flow cell with a mixture of 0.25 mg/ml casein and kinesin (5-50 µg/ml) for 3'.

2. Rinse out unbound material with 80 µl BRB80 + 1 mM DTT + 1 mM MgATP + 10 µM taxol + 1X OS Mix.

3. Flow in 30-50 µl of 10 ug/ml polarity marked taxol microtubules diluted from a 1-2 mg/ml stock into BRB80 + 1 mM DTT + 3 mM MgATP + 10 µM taxol + 1X OS Mix. Focus on the coverslip surface on an upright epifluorescence microscope.

4. After a reasonable density of microtubules have attached to the surface and started translocation, wash out unbound microtubules with 30 µl BRB80 + 1 mM DTT + 3 mM MgATP + 10 µM taxol + 1X OS Mix (optional). Focus on a field-of view on the coverslip surface near the middle of the flow cell and record motility using shuttered attenuated illumination and a digital or video camera.

Although good oxygen scavenging will allow observation with unshuttered illumination, it is a good idea for any live fluorescence studies to use shuttered and attenuated illumination (attenuation is generally done using neutral density filters). It is also essential to keep an eye open for a decline in the performance of the OS Mix. If bleaching becomes apparent when focusing on the sample, prepare a fresh 10X OS Mix from stocks stored at -80¡C.


相关文章

郭天南:全景式组学研究为新冠重症早诊断提供决策依据

分析测试百科网讯在新冠肺炎COVID-19疫情肆虐全球之际,PCR技术在快速筛查中已大显神威,但进入临床后如何更早地区分轻症和重症患者,从而更准确地治疗和用药?5月27日中国研究人员在《Cell》发表......

Cell及子刊发文557篇!2019哪些内地机构和省份表现优秀?

▲2019年,以中国内地机构为第一完成单位的中国科学家在CellPress旗下20种研究类期刊上发表的论文共557篇,而在2014年仅为107篇。▲中科院所属研究机构和重点高校发表的论文占很大比例,两......

高福等团队Cell发文:新冠疫苗已启动II期临床试验!

自新冠疫情爆发以来,已对全球造成了巨大的健康威胁。但是,目前为止尚未找到有效的治疗方法,因此,全球无数科学家都在努力测试相关药物和研发相关疫苗。2020年5月7日,刘磊、高福和高峰等研究团队曾在预印本......

29篇新冠领域研究、共108篇已发表的CNS名单都在这里了

截止2020月5月23日,中国学者在Cell、Nature及Science发表了共计108项研究成果,在生命科学、材料学、物理学、化学等领域取得重大进展,iNature系统总结了这些研究成果:按杂志来......

CellRep:揭秘肿瘤抑制子p53诱发癌细胞死亡的分子机制

癌细胞和p53之间一直存在一种持续的战斗,p53被称为“基因组的守护者”,近日,一项刊登在国际杂志CellReports上的研究报告中,来自意大利特伦托大学等机构的科学家们通过研究鉴别出了影响其之间斗......

AgingCell:如何延缓衰老

健康老龄化已经成为欧洲研究的重点之一。塔尔图大学的研究人员寻找了年轻人和老年人免疫系统的差异。他们把重点放在单核细胞上,发现老年人的单核细胞似乎不能产生那么多的能量,而且与年轻人相比,炎症标志物也增加......

Cell:我国科学家揭示SARSCoV2利用人ACE2进入细胞机制

-新出现和重新出现的病毒是对全球公共卫生的重大威胁。自2019年底以来,中国政府已在中国武汉市报告了一系列人类肺炎病例,这种疾病被命名为2019年冠状病毒病(COVID-19)。这些病例表现出诸如发烧......

Cell学术顾问委员会最新名单:这7位中国学者受邀加入

近日,《中国科学报》注意到,细胞出版社(CellPress)官方网站更新了《细胞》(Cell)杂志学术顾问委员会名单。高福、周琪、王宏伟、黄三文、高彩霞、陈玲玲、张泽民等7位中国科学家入选。加上201......

Cell子刊揭示:甜味剂+碳水化合物更伤身!

随着低热量甜味剂在食品、饮料、药物等方面的广泛应用,关于它在健康方面影响的争议也越来越大。一些科学家认为,长期食用甜味剂将对大脑及新陈代谢产生负面影响。当地时间3月3日,《CellMetabolism......

CellRep:皮肤微生物组中葡萄球菌促进炎症发生

近日,加利福尼亚大学圣地亚哥分校医学院发表研究称,人类皮肤上存在两种常见的葡萄球菌,该菌种会加剧由单一基因突变引起的罕见皮肤病-纳瑟顿综合症的严重程度。“我们的研究表明,人类基因组与皮肤微生物组中的遗......