中国科学院上海药物研究所研究员蒋轶/徐华强团队联合谢欣团队,在Nature Communications上,发表了研究论文Molecular recognition of an acyl-peptide hormone and activation of ghrelin receptor。该成果首次报道了饥饿素受体(ghrelin receptor)分别结合内源多肽激素——饥饿素(ghrelin)和促生长激素释放肽-6(GHRP-6),以及Gq蛋白信号复合体的近原子分辨率结构,揭示了饥饿素受体独特的配体识别和激活的分子机制。

  食物摄取是维持人类生命最基本的活动之一,该过程主要由两类内源性激素——瘦素和饥饿素共同调控。两类激素分别发挥抑制和促进食欲的作用,两者的平衡共同调控机体的能量稳态。饥饿素是目前唯一已知由胃组织分泌的促食欲激素。该激素通过血液循环作用于脑垂体中的饥饿素受体,感知饥饿进而发挥促食欲作用。饥饿素也是目前唯一被发现在生理状态下被脂肪酸修饰的内源多肽激素,其第三位丝氨酸可经酰基转移酶催化产生辛酰化修饰,该修饰对饥饿素识别和激活饥饿素受体至关重要。由于饥饿素系统重要的生理功能,饥饿素受体也成为当前治疗肥胖和糖尿病等代谢性疾病的热门靶标之一。然而,由于饥饿素与其受体复合物等关键结构的缺失,有关饥饿素识别饥饿素受体的模式、辛酰化修饰在饥饿素识别受体中的机制,以及饥饿素受体激活机制等关键科学问题尚未解决,这对理解饥饿素的作用机制以及开发靶向饥饿素受体的药物带来了挑战。

  本研究中,科研团队利用冷冻电镜,解析了饥饿素受体分别结合饥饿素和GHRP-6,以及下游Gq蛋白两个复合物的结构,分辨率分别为2.9和3.2埃(图1a、b)。配体结合和细胞功能分析揭示了饥饿素和GHRP-6与饥饿素受体结合口袋的精确结合模式(图1c);证实了由受体残基I178、L181和F286组成的疏水网络在饥饿素辛酰化基团识别中的关键作用,提出了由辛酰化基团促进饥饿素在口袋的正确定位,并结合激活受体的作用模型(图1d)。研究阐明了E124和R283间保守的盐桥对稳定受体的关键作用,解释了激活多肽诱导R283向受体螺旋核心摆动,进而激活饥饿素受体的新机制(图1e)。该研究为理解饥饿素受体的配体识别和激活机制提供了精准的结构模型,并为靶向饥饿素受体的药物设计提供了新机遇。

相关文章

重磅!今年轰动一时的室温超导《Nature》论文被撤稿

如果超导材料能够在环境温度和压力条件下存在,其表现出的零电阻现象将具有巨大的应用潜力。尽管几十年来进行了大量的研究,但这种状态尚未实现。2023年3月08日,来自美国罗切斯特大学的RangaP.Dia......

《Nature》肌肉研究里程碑:首个高清粗肌丝三维组织

心房颤动、心力衰竭和中风——肥厚性心肌病可导致许多严重的健康状况,是35岁以下人群心脏性猝死的主要原因。心肌是人体的中枢引擎。当然,如果你知道一个坏了的引擎是如何制造和运作的,那么修理它就容易多了。在......

Nature:人造子宫试验快要开始,人造子宫要来了?

2023年9月21日,《Nature》报道:人造子宫的人体试验可能很快就会开始。美国监管机构将考虑对人造子宫的系统进行临床试验,这可以减少极早产婴儿的死亡和残疾。Nature621,458-460(2......

“双非”高校姜昱丞一作发首篇Nature!凝聚态物理新突破

前不久,37岁的姜昱丞首次以第一作者身份发表Nature论文,这也是他所在的苏州科技大学首次在Nature亮相。这篇论文澄清了凝聚态物理领域一个20余年来的误区,并构建了全新理论模型和判定标准。“其实......

跟踪Nature室温超导论文:8位作者指控导师要求编辑撤稿

  在多项重复性研究不支持其结论后,美国罗彻斯特大学迪亚斯团队3月的《Nature》论文再遇危机:该论文11位作者中的8位给《Nature》高级编辑托比亚斯·罗德尔写信称,迪亚斯歪......

事关二氧化碳排放量!清华大学最新Nature

2019年,高能耗的钢铁工业贡献了全球工业二氧化碳排放量的约25%,其对减缓气候变化至关重要。尽管在国家和全球两级讨论了脱碳潜力,但特定于工厂的缓解潜力和技术驱动的途径仍不清楚,这累积起来决定了全球钢......

头发变白的原因找到了!Nature挑战干细胞经典教条

随着年龄的增长,人们的头发会不可避免地变白,也有不少人因为压力或者遗传因素少年白头、早生华发。目前,科学家了解到与头发黑色素产生相关的黑素细胞干细胞(McSCs)比其他成体干细胞群更早失效,这会导致头......

最新!这篇Nature正刊文章被撤回

大约一半人为排放的二氧化碳留在大气中,一半被陆地和海洋吸收。例如,如果由于海洋变暖或永久冻土融化,陆地和海洋吸收碳的效率降低,那么更大比例的人为排放将留在大气中,从而加速气候变化。碳汇效率的变化可以通......

颠覆认知!Nature子刊:中国科大团队对药物递送屏障的重大发现

从脉管系统到肿瘤的有效纳米治疗运输对于最小化副作用的癌症治疗至关重要。2023年9月14日,中国科学技术大学王育才、江维及新加坡国立大学DavidTaiLeong共同通讯在NatureNanotech......

NatureMethods:北大汤富酬团队揭示单个细胞内高阶染色质结构

调控基因组元件的高阶三维(3D)组织为基因调控提供了拓扑基础,但尚不清楚哺乳动物基因组中的多个调控元件如何在单个细胞内相互作用。2023年8月28日,北京大学汤富酬团队在NatureMethods(I......