发布时间:2023-11-09 11:35 原文链接: Nature:科学家成功揭示神经递质转运蛋白的精细化结构

  神经元能通过一种称之为神经递质的化学信号来彼此交流沟通,近日,一篇发表在国际杂志Nature上题为“Mechanisms of neurotransmitter transport and drug inhibition in human VMAT2“的研究报告中,来自美国圣犹大儿童研究医院等机构的科学家们通过研究利用结构生物学知识确定了囊泡单胺转运体2(VMAT 2,vesicular monoamine transporter 2)的结构,其是神经元通信的关键组成部分。

  通过在不同状态下观察VMAT2,科学家们就能更好的理解其是如何发挥功能的,以及蛋白质的不同形状如何影响药物的结合,这或许是治疗诸如小儿多发性抽动症(Tourette syndrome)等多动症疾病(过度运动)的药物开发的关键信息。单胺类化合物包括多巴胺、血清素和肾上腺素,其在神经元交流沟通中扮演着关键角色,这些分子影响着大脑的工作方式,控制机体的情绪、睡眠、运动、呼吸、循环和多种其它功能;单胺类是由是神经元所释放的神经递质(信号分子),但在其被释放之前必须首先被包装成为囊泡结构。

  当神经递质被从突触(化学信号从一个神经元传递到另一个神经元的连接处)释放之前,囊泡就是储存神经递质的细胞区室,我们可以将囊泡想象成为神经元细胞的货船,神经化学物质能被包裹在其中,并被带到其需要去的地方。VMATs就是这些囊泡膜上的蛋白质,其能将单胺类化学物移动到其中的空间,就像货船上的装载起重机一样。研究者Chia-Hsueh Lee解释道,VMATs是将这些单胺类神经递质包装到突触囊泡中所需要的转运蛋白;一旦VMAT利用单胺类填充了囊泡,“货船”就会向突触间隙(神经元之间的空间)所移动,并在那里释放化合物。

  VMAT有两种类型,即VMAT1和VMAT2,VMAT1更加专业,其仅在神经内分泌细胞中存在,而VMAT2则在整个神经系统中都能被发现,且具有重要的临床意义。我们都知道VMAT2在生理学上非常重要,这种转运蛋白是用作治疗诸如舞蹈病和小儿多发性抽动症等多动症药理学相关药物的作用靶点。尽管其非常重要,但VMAT2的结构仍然难以捉摸,这或许就能促使研究人员调查其是如何发挥作用的。如今研究者Lee等人利用冷冻电镜技术获得了VMAT2与单胺血清素以及药物四苯喹嗪(tetrabenazine)和利血平(reserpine)结合的结构,四苯喹嗪和利血平两种药物能分别用来治疗舞蹈病和高血压。

  科学家成功揭示神经递质转运蛋白的精细化结构。

  图片来源:Nature (2023). DOI:10.1038/s41586-023-06727-9

  研究者Yaxin Dai表示,VMAT2是一种小型的膜蛋白,这或许就使其成为了低温电镜结构测定的一个非常具有挑战性的靶点。尽管研究人员所面临的困难重重,但他们使用了一些小技巧,最终捕获了VMAT2的多个结构,这或许就能使其梳理出蛋白质的结构并研究这些药物的确切工作原理。VMAT转运蛋白在运输底物时能采用多种构象(形状),这种模式被称之为交替进入运输,其中蛋白质要么向外,要么向内;为了在原子水平上完全获得机制性的理解,研究人员就需要捕获这种转运蛋白的多个构象结构。

  研究人员还发现,这种动态机制就意味着药物有多重结合机会,这就证实了药物四苯喹嗪和利血平能结合两种不同的VMAT2构象。30或40年的药理学研究表明,这两种药物能以不同的方式来结合转运蛋白,但并没有人知道其在原子细节上是如何发挥作用的,而研究人员所发现的结构就很好地阐明了这两种药物能稳定转运蛋白的两种不同构象,从而阻断其活性表现。VMAT2与血清素结合的结构就能促使研究人员确定能与神经递质相互作用并驱动其转运的特定氨基酸,研究人员相信这是一种共同的机制,这种转运蛋白或能利用这一机制来参与到所有单胺化合物的作用中来。

  尽管这项研究为理解单胺的转运提供了一定的帮助,但研究人员Lee等人还想继续深入理解其中的分子机制,比如,单胺类进入囊泡是质子向另一个方向运动而产生的。研究者Lee说道,我们识别出了对质子依赖过程很重要的氨基酸,但我们仍然并不知道质子驱动这种转运过程的分子机制,确定这一机制就是我们未来的研究方向,有助于研究人员更充分地理解这种转运蛋白的作用机制。

相关文章

西湖大学:揭示神经元调控大脑血流新路径

该校生命科学学院特聘研究员贾洁敏团队的相关研究,揭示了神经元调控大脑血流新路径。他们发现了一座架在神经元与血管之间的“新桥梁”——类突触(NsMJ)。通过类突触,谷氨酸能神经元可直接作用于动脉血管平滑......

大脑里有位GPS“指挥官”

无论是太阳的东升西落,还是城市的东西南北,人们在日常生活中,寻找方向、定位目标或是记忆场景,都需要用大脑对空间信息进行处理和记忆。那么,这个过程是如何在大脑中发生的?中国科学院深圳先进技术研究院(以下......

新研究揭示自我中心编码的细胞和亚细胞机制

确定空间信息的表征机制是探讨空间信息处理的核心任务之一,为学习记忆中空间场景处理原则提供了重要启发。12月14日,中国科学院深圳先进技术研究院脑认知与脑疾病研究所研究员王成团队,联合南方科技大学生命科......

我国学者在神经元糖代谢特征与机制研究方面取得进展

在国家自然科学基金项目(批准号:81991523、82073823)等资助下,南京中医药大学胡刚教授团队在神经元糖代谢特征与机制研究方面取得进展。研究成果以“神经元胞体主要进行有氧糖酵解代谢以防止氧化......

做“白日梦”时大脑在干什么

当人静静地坐着,突然之间,大脑“出神”,仿佛转向了完全不同的世界,可能是最近的经历,也可能是过往的记忆。事实上,可能只是做了个白日梦。那么,在做白日梦时,大脑中发生了什么?这是神经科学家们很难回答的问......

神经元损伤修复搭“桥”的微型生物机器人

由患者自身细胞构建的“分子医生”能够筛查癌症、修复受损组织、清除血管斑块,是研究人员对未来医学的构想。而美国塔夫茨大学发育生物学家MichaelLevin致力将这种构想变为现实。4年前,Levin和同......

半导体所在仿生覆盖式神经元模型及学习方法研究中获进展

人工神经网络是模拟人脑神经活动的重要模式识别工具,备受关注。近年来,深度神经网络(DeepNeuralNetworks,DNN)的改进与优化工作集中于网络结构和损失函数的设计,而神经元模型的发展有限。......

Nature:科学家成功揭示神经递质转运蛋白的精细化结构

神经元能通过一种称之为神经递质的化学信号来彼此交流沟通,近日,一篇发表在国际杂志Nature上题为“Mechanismsofneurotransmittertransportanddruginhibi......

Nature:科学家成功揭示神经递质转运蛋白的精细化结构

神经元能通过一种称之为神经递质的化学信号来彼此交流沟通,近日,一篇发表在国际杂志Nature上题为“Mechanismsofneurotransmittertransportanddruginhibi......

激光粒度仪原理、结构及可测样品类型

激光粒度仪是利用颗粒对光的散射(衍射)现象测量颗粒大小的。即光在行进过程中遇到颗粒(障碍物)时,会有一部分偏离原来的传播方向,颗粒尺寸越小,偏离量越大;颗粒尺寸越大,偏离量越小.散射现象可用严格的电磁......