研究发现视黄酸调控BMP信号通路的分子机制和生物学功能

近日,国际重要学术期刊《美国科学院院刊》(PNAS)发表了中科院上海生科院生化与细胞所景乃禾研究组的最新研究成果,揭示了视黄酸(RA)调控BMP信号通路活性的分子机制,及其在神经管发育过程中的调节作用。这项工作主要由博士研究生盛能印等在景乃禾研究员的指导下完成。 BMP信号是调控胚胎发育的重要信号通路之一,该信号途径的异常会导致胚胎发育的紊乱或癌症的发生,因此对BMP信号的调节具有重要的生物学意义。已有的研究表明,形态生成素FGF和Wnt都可以调节BMP信号活性,并且这种不同信号通路间的整合对早期胚胎的体轴形成非常重要。在中枢神经系统的发育过程中,BMP信号也发挥重要作用,但在此过程中BMP通路是否也与其他信号途径发生整合并不清楚。 景乃禾研究组盛能印博士等发现,RA通过其核内受体RAR上调Gadd45家族成员的表达,而Gadd45随后活化MAPK通路,进而促进磷酸化Smad1与其E3泛素......阅读全文

研究发现视黄酸调控BMP信号通路的分子机制和生物学功能

  近日,国际重要学术期刊《美国科学院院刊》(PNAS)发表了中科院上海生科院生化与细胞所景乃禾研究组的最新研究成果,揭示了视黄酸(RA)调控BMP信号通路活性的分子机制,及其在神经管发育过程中的调节作用。这项工作主要由博士研究生盛能印等在景乃禾研究员的指导下完成。   B

BMP信号通路分阶段调控胚胎干细胞分化的分子机制

  近日,国际知名发育生物学期刊Development发表了中科院上海生命科学研究院生化与细胞所景乃禾研究组的最新研究成果,该研究揭示了BMP信号通路在小鼠胚胎干细胞神经分化不同阶段的功能。   小鼠胚胎干细胞(Embryonic Stem Cells,ESCs)是用于研究哺乳动物早

动物所发现TGFβ/BMP信号通路新调控机制

  TGF-β/BMP信号通路在胚胎发育和维持组织稳态等过程中发挥着重要作用。  抑制性Smads(I-Smads)在TGF-β/BMP信号通路中作为负调控因子,参与调节许多细胞和发育的过程。近来研究报道I-Smads家族的一个成员Smad7,在多种癌症中高表达,并发现其含量与肿瘤恶性程度呈正相关。

动物所发现TGFβ/BMP信号通路新调控机制

  TGF-β/BMP信号通路在胚胎发育和维持组织稳态等过程中发挥着重要作用。抑制性Smads(I-Smads)在TGF-β/BMP信号通路中作为负调控因子,参与调节许多细胞和发育的过程。近来研究报道I-Smads家族的一个成员Smad7,在多种癌症中高表达,并发现其含量与肿瘤恶性程度呈正相关。但I

揭示胚胎发育过程中关键信号通路的表观遗传调控机理

  哺乳动物基因组DNA中的5-甲基胞嘧啶(5mC)是一种稳定存在的表观遗传修饰,通过DNA甲基转移酶(DNMTs)催化产生。近年来研究发现,TET双加氧酶家族蛋白可以氧化5mC,从而介导DNA发生去甲基化。虽然DNA甲基化在哺乳动物基因组印记和X染色体失活等过程中具有非常重要的作用,但是DNA甲基

Cell:“吃我”信号确保胚胎正常发育

美国得克萨斯州大学西南医学中心的研究人员发现,一种叫做自我吞噬作用的同类相残过程能刺激奄奄一息的胚胎干细胞发出“吃我”和“来我这”的信号,以使它们死后的尸体能够被及时清理掉。这些新发现为深入、彻底了解正常的哺乳动物发育铺平了道路。 自我吞噬(autophagy)是细胞吞噬自己不想要或受损的部分的

我国学者揭示胚胎背腹轴发育稳定性的奥秘

  动物胚胎如何由一个均一的卵裂球发育为具有头尾、背腹和左右等不对称特征的胚胎,即胚胎前后、背腹和左右体轴的建立,是发育生物学中一个重要的研究领域。为纪念创刊125周年,Science杂志于2005年7月提出了125个重要的科学问题。上述胚胎不对称性建立的机制,即属于其中的科学问题之一。图1. 爪蟾

研究揭示胚胎发育关键信号调控机理

近日,中国科学院院士、中国科学院上海生命科学研究院生物化学与细胞生物学研究所研究员徐国良课题组和美国加州大学圣地亚哥分校教授孙欣课题组合作,在一项最新研究中发现,TET双加氧酶介导的DNA去甲基化与DNMT甲基转移酶介导的甲基化共同作用,能够通过调控Lefty-Nodal信号通路,控制小鼠胚胎原肠运

生化与细胞所发现AP2γ调控外胚层模式建成的机制

  9月4日,国际学术期刊Cell Research在线发表了中科院上海生命科学研究院生化与细胞所景乃禾研究组的研究论文AP2γ regulates neural and epidermal development downstream of the BMP pathway at early s

上海交大首席科学家连发两篇Nature子刊文章

  上海交通大学的李保界教授是“长江学者奖励计划”特聘教授,干细胞国家重大科学研究计划首席科学家,今年其研究组接连在Nature Cell Biology,以及Nature Communications杂志上发表文章,解析了酪氨酸激酶c-Abl在成骨细胞扩增中的重要作用及分子机制,以及一种与

中科院、清华Cell子刊发表miRNA研究新成果

  来自中科院动物研究所及清华大学的研究人员通过斑马鱼胚胎实验,揭示了一个对咽软骨形成起至关重要作用的小分子MicroRNA-92a及其作用机制。相关论文发表在2月11日的《发育细胞》(Developmental Cell)杂志上。   中科院动物研究所的王强(Qiang Wang)博士和清华

胚胎干细胞发育研究取得新进展

  清华大学陈烨光研究组和中科院遗传与发育研究所韩敬东研究组合作在胚胎干细胞发育研究方面取得新的进展,相关成果文章“Genome-wide mapping of SMAD target genes reveals the role of BMP signaling in embryonic stem

研究发现咽囊前体细胞并阐明其特化机制

  脊椎动物胚胎的一个显着特征是在头颈部两侧具有数个明显的皱襞,称为鳃弓或咽弓(Pharyngeal Arch)。胚胎的颅面组织和口腔皆由咽弓通过生长、分化、融合和扩张发育而来(图1)。咽囊(Pharyngeal Pouch)是鳃弓的内胚层组织,位于前肠最前端,是咽区内胚层沿前-后轴依次出芽形成的一

清华孟安明院士Nature子刊揭示细胞信号新机制

  来自清华大学、中科院动物研究所的研究人员在新研究中证实,组织者特异性的Bmp2b(organizer-specific Bmp2b,osBmp2b)是胚胎发育过程中形成正确Bmp活性梯度的必要条件。这一研究发现发表在4月29日的《自然通讯》(Nature Communications)杂志上。 

骨形成蛋白-如何从细胞内运输到细胞外?

  骨形成蛋白(bone morphogenetic protein,BMP)是一类重要的形态发生素,其介导的信号通路不仅广泛参与胚胎发育、器官形成、组织再生等生命过程,还与多种疾病及肿瘤发生密切相关,因此BMP信号通路受到学术界的广泛关注。然而,作为一类经典的胞外信号分子,BMP是如何从细胞内分泌

胰岛素信号通路影响体内棕色脂肪发育

  近日,国际内分泌学期刊endocrinology在线刊登了来自美国哈佛大学医学院Yu-Hua Tseng研究小组的一项最新研究成果,他们发现阻断胰岛素信号通路会影响棕色脂肪组织发育过程,但对肌肉发育没有影响。这一研究成果拓展了人们对胰岛素在影响组织分化方面的认识。  Yu-Hua Tseng教授

动物所发现咽囊前体细胞并阐明其特化机制

  脊椎动物胚胎的一个显著特征是在头颈部两侧具有数个明显的皱襞,称为鳃弓或咽弓(Pharyngeal Arch)。胚胎的颅面组织和口腔皆由咽弓通过生长、分化、融合和扩张发育而来(图1)。咽囊(Pharyngeal Pouch)是鳃弓的内胚层组织,位于前肠最前端,是咽区内胚层沿前-后轴依次出芽形成的一

动物所发现咽囊前体细胞并阐明其特化机制

  脊椎动物胚胎的一个显著特征是在头颈部两侧具有数个明显的皱襞,称为鳃弓或咽弓(Pharyngeal Arch)。胚胎的颅面组织和口腔皆由咽弓通过生长、分化、融合和扩张发育而来(图1)。咽囊(Pharyngeal Pouch)是鳃弓的内胚层组织,位于前肠最前端,是咽区内胚层沿前-后轴依次出芽形成的一

研究揭示重要形态发生素BMP的分泌调控机制

  骨形成蛋白(bone morphogenetic protein,BMP)是一类重要的形态发生素,其介导的信号通路不仅广泛参与胚胎发育、器官形成、组织再生等生命过程,还与多种疾病及肿瘤发生密切相关,因此BMP信号通路受到学术界的广泛关注。然而,作为一类经典的胞外信号分子,BMP是如何从细胞内分泌

Cell子刊:心脏的不对称发育之路

  从外表来看,我们的机体几乎是完全对称的。然而实际上,包括心脏在内的大多数内脏器官都是不对称的。心脏的右侧负责肺循环(pulmonary circulation),而左侧负责供应机体的其他部分,这种不对称性使心脏得以有效工作。   德国MDC分子医学中心的研究人员Dr. Justus Vee

动物所揭示胚胎背腹轴建立的分子机制

  在脊椎动物发育过程中,原肠期是体轴建立和中内胚层形成的重要时期。胚胎体轴的建立是一系列信号通路相互作用和细胞剧烈运动的结果。在鱼类、两栖类、鸟类和哺乳动物中陆续发现了背部组织中心的存在。背部组织中心自身可以形成脊索、前脊索板、神经底板、背部内胚层等中轴组织,同时还可以指导其周围的细胞分化为体节、

水生所揭示Smad蛋白介导BMP信号的调控机制

  BMP蛋白是一类形态发生素(morphogen),对胚胎早期发育的背腹轴向决定起着关键作用,其功能丧失将导致腹侧发育的严重缺陷。BMP信号由3类受体型Smad——Smad1、Smad5、Smad8 (Smad9)来介导。然而,这些受体型Smad是如何在胚胎发育早期进行精细调控,在整体水平上调

安捷伦使用代谢组学方法研究胚胎大脑发育的新型毒性通路

安捷伦科技联手约翰霍普金斯大学使用代谢组学方法研究胚胎大脑发育的新型毒性通路     2010 年 8 月 23 日,北京 — 安捷伦科技公司(NYSE:A)和安捷伦基金会今日宣布,Thomas Hartung 博士荣获安捷伦思想领袖奖,该奖项肯定了 Thomas Hartung

Nature-|-胚胎干细胞悬浮培养首次构建体外类囊胚

  哺乳动物的发育起源于受精卵,受精卵通过分裂,经历了2-cell、4-cell、8-cell、桑葚胚(Morula)再到囊胚(Blastocyst)阶段,称之为着床前胚胎(pre-implantation)。随后胚胎植入子宫壁,诱导子宫内膜蜕膜化(decidualization)预示着成功着床(i

Nature-|-胚胎干细胞悬浮培养首次构建体外类囊胚

  哺乳动物的发育起源于受精卵,受精卵通过分裂,经历了2-cell、4-cell、8-cell、桑葚胚(Morula)再到囊胚(Blastocyst)阶段,称之为着床前胚胎(pre-implantation)。随后胚胎植入子宫壁,诱导子宫内膜蜕膜化(decidualization)预示着成功着床(i

神经胶质胚胎发育

  大部分的胶质细胞自发育中胚胎的外胚层组织衍生而来,特别是神经管及神经脊;唯一例外者为自造血干细胞衍生而来的小胶质细胞。在成人的身体中,小胶质细胞为可自我更新的一个族群,与中枢神经系统受损时会渗入的巨噬细胞及单核细胞有明显不同。 在中枢神经系统,胶质细胞发育自神经管的脑室区(ventricular

Science:皮肤多毛或多汗?科学家们找到了调控的关键机制

  或许我们都有注意到,狗在炎热环境下会有吐出舌头大口喘息的习惯,这是为什么呢?其实是因为它们汗腺不发达(几乎只在趾部存在),所以主要依赖喘息方式实现散热。而人类却不用如此费劲,我们可以通过出汗散热。皮肤上汗腺的存在让我们能够以最便捷快速的方式自我降温,人类是少数能够通过出汗避免过热的哺乳动物之一。

Smad7非依赖TGFβ通路调控干细胞多能性的新机制

  TGF-β超家族信号通路参与了广泛的生物学过程,对调控早期胚胎发育、细胞的生长、干细胞的自我更新、肿瘤的发生发展等具有十分重要的调控作用。作为TGF-β超家族信号通路中抑制性的SMADs(Inhibitory SMADs, I-SMADs),Smad7过去一直被认为是TGF-β信号通路重要的负反

上海生科院揭示转录中介体Med23亚基在神经分化过程

  1月6日,国际学术期刊Development 在线发表了中国科学院上海生命科学研究院生物化学与细胞生物学研究所王纲研究组的研究成果Mediator Med23 deficiency enhances neural differentiation of murine embryonic stem

Nature胚胎发育研究:重建人体发育时间

  京都大学(Kyoto University)的研究人员利用诱导多能干细胞(iPSC)重构了人体“分节时钟segmentation clock”,这是胚胎发育研究的重点。  这一成果公布在4月1日的Nature杂志上  从受精卵的第一个部分开始,一个复杂的蛋白质和基因网络相互作用,构建形成了我们器