Antpedia LOGO WIKI资讯

中国首创遗传性耳聋基因检测芯片

我国每年有近3万新生儿先天性耳聋,其中60%是遗传造成的。而随着一项基因检测技术大量应用于临床,这一残酷现实将得到缓解。 记者日前从生物芯片北京国家工程研究中心暨博奥生物有限公司了解到,其自主研发可以快速诊断遗传性耳聋的基因检测芯片已经在国内率先取得国家食品药品监督管理局医疗器械证书,有望在近几年逐步走进全国各大医院。 属于国际前沿科技的基因检测芯片,是在一块指甲大小的玻片或硅片上植入已知基因序列的核酸片段作为生物探针,通过与样品进行反应发出信号,再用计算机技术收集信号数据,分析样品的基因突变情况来诊断遗传性疾病。 基因检测芯片技术具有高效率、高通量、低成本等特点,将有助于改变我国许多地区遗传性耳聋缺乏早期诊断的状况。生物芯片北京国家工程研究中心主任、中国工程院院士程京说,这一芯片可以提供从孕前、产前到出生的基因检测,帮助生育父母及时获知新生命的遗传信息并采取措施,降低新生儿患遗传性耳聋的概率。 ......阅读全文

基因突变检测方法

基因突变检测方法:1.PCR-SSCP法是在非这性聚丙烯酰胺凝胶上,短的单链DNA和RNA分子依其大街基序列不同而形成不同构象,一个碱基的改变将影响其构象而导致其在凝胶上的移动速度改变。其基本原理为单链DNA在中性条件下会形成二级结构,这种二级结构依赖于其碱基组成,即使一个碱基的不同,也会形成不同的

生物芯片用于基因表达水平的检测

用基因芯片进行的表达水平检测可自动、快速地检测出成千上万个基因的表达情况。谢纳(M.Schena) 等用人外周血淋巴细胞的cDNA文库构建一个代表1046个基因的cDNA微阵列,来检测体外培养的T细胞对热休克反应后不同基因表达的差异,发现有5个基因在处理后存在非常明显的高表达,11个基因中度表达增加

生物芯片技术用于基因表达水平的检测

用基因芯片进行的表达水平检测可自动、快速地检测出成千上万个基因的表达情况。谢纳(M.Schena) 等用人外周血淋巴细胞的cDNA文库构建一个代表1046个基因的cDNA微阵列,来检测体外培养的T细胞对热休克反应后不同基因表达的差异,发现有5个基因在处理后存在非常明显的高表达,11个基因中度表达增加

基因突变检测的方法

  1.焦磷酸测序法  测序法的基本原理是双脱氧终止法,是进行基因突变检测的可靠方法,也是使用最多的方法。但其过程繁琐、耗时长,灵敏度不高,对环境和操作者有危害,故在临床应用中存在一定的限制。  2.单链构象异构多态分析技术  依据单链DNA在某一种非变性环境中具有其特定的第二构象,构象不同导致电泳

基因突变检测的常见检测方法

  1.焦磷酸测序法  测序法的基本原理是双脱氧终止法,是进行基因突变检测的可靠方法,也是使用最多的方法。但其过程繁琐、耗时长,灵敏度不高,对环境和操作者有危害,故在临床应用中存在一定的限制。  2.单链构象异构多态分析技术  依据单链DNA在某一种非变性环境中具有其特定的第二构象,构象不同导致电泳

生物芯片技术应用与基因表达水平的检测

用基因芯片进行的表达水平检测可自动、快速地检测出成千上万个基因的表达情况。谢纳(M.Schena) 等用人外周血淋巴细胞的cDNA文库构建一个代表1046个基因的cDNA微阵列,来检测体外培养的T细胞对热休克反应后不同基因表达的差异,发现有5个基因在处理后存在非常明显的高表达,11个基因中度表达增加

基因突变检测的临床应用

  基因突变检测可用于多种疾病的早期筛查、诊断及预后判断。多种恶性肿瘤,如恶性黑色素瘤、甲状腺癌、结直肠癌、肺癌等存在不同比例的B-raf基因突变;结直肠癌、胰腺癌、肺癌等存在不同比例的K-ras基因突变。良性肿瘤的患者若是检出B-raf或K-ras基因突变,提示有肿瘤恶变的可能。PIK3CA基因突

基因突变检测的临床应用

  基因突变检测可用于多种疾病的早期筛查、诊断及预后判断。多种恶性肿瘤,如恶性黑色素瘤、甲状腺癌、结直肠癌、肺癌等存在不同比例的B-raf基因突变;结直肠癌、胰腺癌、肺癌等存在不同比例的K-ras基因突变。良性肿瘤的患者若是检出B-raf或K-ras基因突变,提示有肿瘤恶变的可能。PIK3CA基因突

生物芯片用于基因测序

基因芯片利用固定探针与样品进行分子杂交产生的杂交图谱而排列出待测样品的序列,这种测定方法快速而具有十分诱人的前景。研究人员用含135000个寡核苷酸探针的阵列测定了全长为16.6kb的人线粒体基因组序列,准确率达99%。用含有48000个寡核苷酸的高密度微阵列分析了黑猩猩和人BRCA1基因序列差异,

生物芯片与基因发现

    最新一期《Science》发表K.K.Jain的文章Biochips for Gene Spotting,全文如下:发表生物芯片是目前生物技术中主要的技术之一。研究人员从计算机技术中借用了微型化、整合、平行化处理的技术来发展在芯片上的实验室装置和处理过程。一般地,在芯片上的靶标是有序排列