Antpedia LOGO WIKI资讯

神经学家尝试将脑细胞“窃听术”自动化

将一个电极夹在活体动物大脑细胞上记录其电颤振是一项需要灵巧度和耐心的工作。这种技术的名字是“全细胞膜片钳”,被誉为“神经科学最好的艺术”,神经生物学家Edward Boyden说,而且该技术在全世界范围内仅有寥寥无几的实验室可以操作。 但研究人员正在设法使其转变为精简的、自动化的技术,利用机器人和可下载的源代码让任何实验室都可以进行操作,从而让这种艺术不再那么神秘。 “全细胞膜片钳提供了一种了解神经回路的独特方法,但这种令人兴奋的技术使用量却很低。”美国弗吉尼亚大学霍华德·休斯医学研究所珍妮莉娅研究院神经学家Karel Svoboda说,“这正是自动化是极为令人振奋方向的原因。” 3月3日,在麻省理工学院工作的Boyden和同事发表了详细的说明指南,介绍了如何组装及操作全细胞膜片钳自动化系统,他们在2012年首次描述了这一概念。这份指南代表了Boyden和亚特兰大佐治亚理工学院机械工程专家Craig Forest实验......阅读全文

研究发现能够调节神经环路连接的关键分子

  17日,顶尖学术期刊《细胞》在线发表了一篇神经科学领域的重要研究。来自斯坦福大学的骆利群教授和Alice Ting教授联合团队开发了一种新颖的分析手段,可用于研究神经细胞表面的蛋白质组。利用这一技术,科学家们找到了20个能够调节神经环路连接的关键分子。  我们知道,从单细胞到多细胞,是生命演化史

追随诺奖脚步,Science解析重要靶标分子研究

  来自斯克里普斯研究所(TSRI)和范德堡大学的研究人员,生成了一个重要膜蛋白的最详细3-D图像。这一蛋白与学习、记忆、焦虑、疼痛及诸如精神分裂症、帕金森病、阿尔茨海默氏症和自闭症等脑疾病相关。   范德堡神经科学药物发现中心主任、药理学教授P. Jeffrey Conn博士,和斯克里普斯研究所

2018年度巨献:打破教科书,挑战常规的突破性研究解读

  很多教科书中的理论知识及日常生活中的传统观点仅限于目前科学家们的研究结果,然而随着时间推进,科学研究在不断在发展的同时,一些新的研究成果也会层出不穷,很多教科书中的观点也会被覆盖更新,很多传统认知也会被替换。那么2018年都有哪些打破教科书或挑战传统认知的突破性研究成果呢,本文中,小编就对201

生物谷7月份结构生物学研究进展一览

  1. Cell:中科院生物物理所王艳丽/章新政课题组从结构上揭示Cas13a切割RNA机制  doi:10.1016/j.cell.2017.06.050  CRISPR/Cas系统是目前发现存在于大多数细菌与所有的古菌中的一种免疫系统,被用来识别和摧毁抗噬菌体和其他病原体入侵的防御系统。在CR

绘制大脑活动图谱:神经科学的神圣新使命

  也许,很多人在孩提时代曾被迷宫游戏深深吸引过。对科学家来说,宛如神奇迷宫般的人脑一直具强大的吸引力。人脑如何成就了人类的独特智慧?科学巨人爱因斯坦的那颗不平凡大脑究竟隐藏了什么?……尽早揭开许许多多的谜底是生物学家长期以来的梦想。   2003年4月,人类基因组计划(简称HGP)

背照式 sCMOS 相机Prime 95B在探索大脑奥秘的应用

随着科学家称人类的大脑有着惊人的860亿个神经元的家园,每个细胞织带在每个可能的方向都有几个联接,形成了一个控制人类思想、意识、行为的超级巨大的蜂窝网络。深入研究神经元,也已经成为科学家们探索大脑奥秘的重要手段。传统了解神经元电信号活动的方法是离体或在体电生理记录法,到后来发展使用钙离子荧光成像技术

免疫细胞化学在神经科学中的应用

免疫细胞化学的发展对许多领域的研究起到很大的推动作用,在神经科学的研究中尤为突出。本章 仅就免疫细胞化学在神经科学的基础研究方面的应用做一简要介绍。  一、确定神经递质的性质、定性和分布  早期的神经科学工作者应用传统的神经解剖学研究方法如甲基蓝染色法、镀银染色法等对中枢及外周神经系统的结构做了大量

Neuron:饶毅等提出脑研究的“化学连接组”新概念

  “化学连接组是一个新概念,化学连接组学是一个新途径,应用于果蝇的相关工具是强有力的资源”。  2019年2月21日,重要国际学术期刊《神经元》发表北京大学饶毅教授实验室的论文:“化学连接组学:绘制果蝇的化学传递图谱”。 其摘要中明确提出“化学连接组是一个新概念,化学连接组学是一个新途径,应用于果

上海生科院揭示果蝇幼虫机械性伤害刺激感受的分子机制

  11月6日,中国科学院上海生命科学研究院神经科学研究所王佐仁研究组在Cell Reports 学术期刊在线发表了题为《PPK26在果蝇幼虫机械性伤害刺激感受中的作用》的研究文章。该工作通过遗传操作、免疫组化以及行为学等实验揭示了DEG/ENaC通道家族成员PPK26分子在果蝇幼虫机械性伤害刺激感

《大众科学》评出2016年度十大创新人物

  近日,《大众科学》杂志再次从美国科学和工程领域的研究人员中,评选出本年度最具创新型思维的10大年轻面孔。  斯达兹•噶哥:保护硬件免遭黑客破坏  芯片包含一系列功能模块,每个模块执行特定任务,中心模块会控制模块间的数据传送。黑客们伪装成工人潜伏到工厂,向芯片刷入一些恶意固件,日后就会控制或毁坏植

诺贝兰迪·谢克曼:Nature、Science和Cell损害了科学研究进展

  在这里和大家分享机器之心对2013年诺贝尔奖得主Randy Schekman的专访以及简短视频,希望在新的一年里可以为大家带来一些力量和全新的开始。  Randy Schekman是2013年诺贝尔生理学或医学奖得主,获奖原因是他对细胞膜传输的研究。他除了对待科学严谨认真之外,还直言不讳地在《卫

上海生科院揭示果蝇幼虫机械性伤害刺激感受的分子机制

  11月6日,中国科学院上海生命科学研究院神经科学研究所王佐仁研究组在Cell Reports 学术期刊在线发表了题为《PPK26在果蝇幼虫机械性伤害刺激感受中的作用》的研究文章。该工作通过遗传操作、免疫组化以及行为学等实验揭示了DEG/ENaC通道家族成员PPK26分子在果蝇幼虫机械性伤害刺激感

上海生科院揭示离子通道功能调控机制

  2月4日,中国科学院上海生命科学研究院神经科学研究所蔡时青组在《神经科学杂志》发表了题为《线虫Kv4钾离子通道KChIP辅助亚基调控肌肉兴奋性和控制雄虫交配行为》的研究论文。文章报道了线虫KChIP辅助亚基通过促进Kv4钾离子通道的生成,调控神经元和肌肉细胞的兴奋性,进而影响动物的一些重要行为。

重要科学现象往往被忽视

  2016年4月29日《科学》杂志上的一项研究,揭示出控制睡眠-觉醒周期的生物学机制。它证实简单地改变脑脊液中的化学物质平衡就可以改变动物的意识状态。这个研究思路非常巧妙,又让人觉得符合逻辑。离子浓度和神经元兴奋性的关系十分密切,甚至是决定神经元兴奋性的开关。只不过过去我们没有把这种似乎属于环境状

神经生物学领域最新研究进展

  本期为大家带来的是神经生物学领域最近的研究进展,希望读者朋友们能够喜欢。  1. Nature:新研究首次揭示抑制年龄相关的神经活动增加竟可延长寿命  doi:10.1038/s41586-019-1647-8.  在一项针对线虫、小鼠和人类的研究中,来自美国哈佛医学院的研究人员发现在整个动物界

导致ALS和FTD细胞自主式兴奋毒性的新机制

  7月24日,《神经科学杂志》在线发表了题为《C9orf72双肽重复序列导致果蝇谷氨酸能神经元选择性退化和细胞自主性兴奋毒性》的论文。这项研究报道了ALS/FTD致病基因C9orf72的六碱基重复序列变异在突触功能调控和神经兴奋性毒性中的重要机制,可以帮助认识此基因变异在ALS和FTD发病中的作用

科学家发现导致ALS和FTD细胞自主式兴奋毒性的新机制

  7月24日,《神经科学杂志》在线发表了题为《C9orf72双肽重复序列导致果蝇谷氨酸能神经元选择性退化和细胞自主性兴奋毒性》的论文。这项研究报道了ALS/FTD致病基因C9orf72的六碱基重复序列变异在突触功能调控和神经兴奋性毒性中的重要机制,可以帮助认识此基因变异在ALS和FTD发病中的作用

光遗传技术为细胞结构研究带来机遇

  转基因斑马鱼胚胎上的闪亮蓝光让科学家选择性地激活光敏感转录因子。图片来源:Anna Reade  从现在开始10年后,这种技术将会成为发育生物学和细胞生物学界人人使用的工具。  Kevin Gardner打开一个小冰箱模样的培养器,看着里面闪烁的蓝光,这种场景经常让他想起上世纪70年代的美国纽约

自然子刊综览

  《自然—纳米技术》   新疫苗可提高抗体浓度和效果   科学家在《自然—纳米技术》上报告称,他们研发出一种维持毒素结构的疫苗会改善疫苗效果。   在未激活毒素基础上研制出的疫苗通常用来在不会导致病人病情加重的情况下,刺激产生针对比如大肠杆菌等细菌感染的免疫反应。一般我们利用化学手段或者加热

光遗传技术为细胞结构研究带来机遇

   转基因斑马鱼胚胎上的闪亮蓝光让科学家选择性地激活光敏感转录因子。图片来源:Anna Reade  从现在开始10年后,这种技术将会成为发育生物学和细胞生物学界人人使用的工具。  Kevin Gardner打开一个小冰箱模样的培养器,看着里面闪烁的蓝光,这种场景经常让他想起上世纪70年代的美国纽

显微镜市场概况和主要行业 生命科学和半导体居前2位

2020年,全球显微镜市场规模为95亿美元,预计2021年至2027年的复合年增长率(CAGR)为7.9%。2021年市场规模预测为103亿美元,2027年预测将达162亿美元。不断增长的应用和对技术先进的放大设备的高需求是推动市场的因素。医疗行业的高需求和快速增长的半导体行业是推动市场增长的一些因

熊伟:新型质谱技术让神经化学研究进入单细胞时代

  世界上没有两片完全相同的叶子,细胞也是。然而,科学家们在进行现代生物学研究时,大多时候都考察的是细胞群体,而忽略了细胞异质性。  就拿神经细胞来说,大脑中有亿万个神经细胞,这些神经细胞在细胞形态,突触连结,细胞结构,电生理以及生理功能上具有高度的多样性。不同种类的神经细胞中,其基因组、蛋白组、化

解析果蝇幼虫“主演”的黑白短片

   Marta Zlatic拥有可谓最冗长乏味的影片资料库。在她位于美国弗吉尼亚州霍华德·休斯医学研究所珍妮莉亚研究园区的实验室中,这位神经科学家储存了2万多个小时、由果蝇幼虫“主演”的黑白短片。这些影片的主角正在做一些日常的事情,比如蠕动、爬行,但它们能帮助回答现代神经科学中的最重要问题之一 —

2019年8月CRISPR/Cas最新研究进展

  基因组编辑技术CRISPR/Cas9被《科学》杂志列为2013年年度十大科技进展之一,受到人们的高度重视。CRISPR是规律间隔性成簇短回文重复序列的简称,Cas是CRISPR相关蛋白的简称。CRISPR/Cas最初是在细菌体内发现的,是细菌用来识别和摧毁抗噬菌体和其他病原体入侵的防御系统。图片

一文了解2019年11月29日Science期刊精华

  本周又有一期新的Science期刊(2019年11月29日)发布,它有哪些精彩研究呢?让小编一一道来。  1.Science:利用机器引导设计方法优化AAV病毒衣壳  doi:10.1126/science.aaw2900  天然的AAV并不特异性地靶向患病的细胞和组织,它们可以被免疫系统识别,

Nature:干细胞具有一种出乎意料的自我监督方式

  斯坦福大学医学院的研究人员发现利用一种化合物治疗小鼠,能提高休眠蛋白的表达,从而令它们不留疤痕治愈伤口。研究人员希望这一发现能用于针对正常衰老过程中保持肌肉放松,以及治疗肌营养不良症等疾病。  这一研究成果公布在11月28日的Natue杂志上,文章的通讯作者是斯坦福大学Glenn衰老生物学研究中

光遗传学——照进细胞的一束光

  图片来源:Anna Reade  转基因斑马鱼胚胎上的闪亮蓝光让科学家选择性地激活光敏感转录因子。  从现在开始10年后,这种技术将会成为发育生物学和细胞生物学界人人使用的工具。  Kevin Gardner打开一个小冰箱模样的培养器,看着里面闪烁的蓝光,这种场景经常让他想起上世纪70年代的美国

激光共聚焦技术发展方兴未艾

  分析测试百科网讯 作为分子到亚细胞水平的成像设备,激光共聚焦技术的发展,使得光学显微镜技术向下延伸到了纳米级别,也因此极大地促进了其在生命科学领域的应用。2017年3月21日,由北京理化分析测试技术学会、北京市电镜学会主办,北京理化分析测试技术学会、北京市电镜学会承办的“北京市2017年度激光共

免疫细胞化学在神经科学中的应用-2

七、个体和种族发育的研究  神经系统是一个历史发展的产物,有种族发育和个体发育的历史。在种系发生方面,有不同的发育规律,如一些神经肽自腔肠动物已经发生,而VIP自鱼类才开始发生。免疫反应的强弱和神经肽的含量亦因种属不同而异,如笔者对输精管的神经支配的研究表明,在大鼠、豚鼠和猫等动物,输精管管壁内有丰

Nature:接入脑细胞的机器

  请你试想一下:将电极固定在活体动物的脑细胞上并记录其电颤振,这得需要多大的技巧和耐心?神经生物学家Edward Boyden解答说,这项技术就是大名鼎鼎的“全细胞膜片钳”(whole-cell patch-clamping),被奉为“神经科学中最精密的技术”,全球仅有几十个实验室专攻此术。  不