蜘蛛丝天然超级透镜,能使显微镜分辨率提升2至3倍

新一期美国《纳米通讯》杂志发表的一项研究显示,自然界的蜘蛛丝是一种天然的超级透镜,可以有效帮助常规光学显微镜突破“视力”极限。这是生物超级透镜首次登上科技舞台,为超级透镜研究开辟了全新的发展方向。 这项研究由英国班戈大学电子工程系的王增波主持,并与牛津大学弗里茨·沃尔拉特教授等人合作完成。 王增波对新华社记者说:“这项研究的漂亮之处就在于它的简单性,超级透镜设计和制备一直是个比较复杂的课题,需要专业的知识和设备。但天然的蜘蛛丝居然可以实现超级透镜的功能,根本不需要加工,就能使显微镜分辨率提升2至3倍。” 观测时,研究人员首先利用透明胶带把蜘蛛丝放置于样品上,并在样品和蛛丝的缝隙之间注入无水酒精以提高成像质量,然后利用普通白光显微镜进行观测。由于蜘蛛丝对光的折射,原有“看不见”的纳米结构被放大2到3倍,从而把传统光学显微镜的分辨极限由200纳米提高到至少100纳米。 王增波说,他们利用蜘蛛丝透镜直接观察到了蓝光光盘上的......阅读全文

蜘蛛丝天然超级透镜,能使显微镜分辨率提升2至3倍

  新一期美国《纳米通讯》杂志发表的一项研究显示,自然界的蜘蛛丝是一种天然的超级透镜,可以有效帮助常规光学显微镜突破“视力”极限。这是生物超级透镜首次登上科技舞台,为超级透镜研究开辟了全新的发展方向。  这项研究由英国班戈大学电子工程系的王增波主持,并与牛津大学弗里茨·沃尔拉特教授等人合作完成。  

磁透镜与光学透镜的比较

  光学透镜成像时,物距L1、象距L2、焦距f三者之间满足右图1所示关系式:  由于光学透镜的焦距f是不能改变的,要满足成像条件,必须同时改变L1和L2。  与光学透镜相似,电磁透镜成像时也必须满足式。但磁透镜的焦距可以通过改变线圈中通过电流的大小来调节。采用磁透镜成像时,可以在固定L1的情况下,改

超级透镜把显微镜分辨率提高5倍

  中国和英国研究机构的科学家12日在新一期美国《科学进展》杂志上报告说,他们利用常见的二氧化钛纳米粒子制备一种固态半球超级透镜,能把光学显微镜的分辨率提高4到5倍,大幅突破了常规光学显微镜的极限分辨率。   这项研究由英国班戈大学电子工程系的王增波和中国复旦大学材料系的武利民等人合作完成。   王

仿生装置首次“吐出”千米人造蛛丝

  据美国《每日科学》网站1月9日报道,人工制造出蜘蛛丝一直是很多科学家的梦想。现在,瑞典科学家设计出一种模拟蜘蛛吐丝过程的仿生学吐丝装置,并利用它制造出与蜘蛛丝相似的千米长人造蛛丝纤维。相关研究发表在最新一期《自然·化学生物学》杂志上。  自然界的蜘蛛丝是一种极具吸引力的物质,它体轻质坚,能生物降

徕卡显微镜——电子透镜的光学参量和基本公式

徕卡显微镜的电子在电磁场中的运动轨迹在数学上可用一种微分方程来描述。一般说来这种方程组相当复杂的。但理论研究指出,如果加以一定的条件限制,情况就可大大简化,并可由此得出和几何光学柞F常相似的成像规律,从而导出电子透镜的性质及其像差的概念。这些内容构成了几何电子光学的基础。首先我们应该象几何光学中那样

光学透镜的组成和应用

  透镜是用透明物质制成的表面为球面一部分的光学元件,镜头是由几片透镜组成的,有塑胶透镜(plastic)和玻璃透镜(glass)两种,玻璃透镜比塑胶贵。通常摄像头用的镜头构造有:1P、2P、1G1P、1G2P、2G2P、4G等,透镜越多,成本越高。因此一个品质好的摄像头应该是采用玻璃镜头的,其成像

光学透镜的主要应用和种类

 透镜可广泛应用于安防、车戴、数码相机、激光、光学仪器等各个领域,随着市场不断的发展,透镜技术也越来越应用广泛。(lens)透镜是根据光的折射规律制成的。透镜是由透明物质(如玻璃、水晶等)制成的一种光学元件。透镜是折射镜,其折射面是两个球面(球面一部分),或一个球面(球面一部分)一个平面的透明体。它

徕卡生物显微镜透镜

前面我们讨论的是徕卡生物显微镜理想成像的电子光学。在一些待定的条件下,物与像之间有点一点对应和几何相似的关系。然而实际情况与理想的像有偏离,这就是像差。我们可以根据它们不同的产生原因,用像点径向位置的偏离来作定量描述。 1,徕卡生物显微镜几何修差 当电子轨迹不满足倍铀条件时所形成的像差称为几何像差。

西安光机所光学超透镜研究取得进展

  近期,中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室微纳光子集成课题组利用单层超透镜(metalens)实现了左、右旋圆偏振光在三维空间的分离聚焦,打破了以往自旋相关光束聚焦的对称性,超越了传统几何光学透镜的光场聚焦能力,对光学成像研究具有重要意义。   传统几何光学透镜仅是通

体视显微镜中透镜的像差

体视显微镜中透镜的像差前面我们讨论的是理想成像的电子光学。在一些待定的条件下,物与像之间有点一点对应和几何相似的关系。然而实际情况与理想的像有偏离,这就是伤差。我们可以根据它们不同的产生原因,用像点径向位置的偏离来作定量描述。

影响光学显微镜和电磁透镜分辨率的关键因素

光学显微镜的分辨率主要影响因素是照明光源的波长,要提高分辨率关键是有波长短,又能聚焦成像的照明光源。电磁透镜的分辨率由衍射效应和球面像差来决定,关键是确定电磁透镜的最佳孔径半角,使得衍射效应埃利斑和球差散焦斑尺寸大小相等

影响光学显微镜和电磁透镜分辨率的关键因素

光学显微镜的分辨率主要影响因素是照明光源的波长,要提高分辨率关键是有波长短,又能聚焦成像的照明光源。电磁透镜的分辨率由衍射效应和球面像差来决定,关键是确定电磁透镜的最佳孔径半角,使得衍射效应埃利斑和球差散焦斑尺寸大小相等

影响光学显微镜和电磁透镜分辨率的关键因素

光学显微镜的分辨率主要影响因素是照明光源的波长,要提高分辨率关键是有波长短,又能聚焦成像的照明光源。电磁透镜的分辨率由衍射效应和球面像差来决定,关键是确定电磁透镜的最佳孔径半角,使得衍射效应埃利斑和球差散焦斑尺寸大小相等

影响光学显微镜和电磁透镜分辨率的关键因素

光学显微镜的分辨率主要影响因素是照明光源的波长,要提高分辨率关键是有波长短,又能聚焦成像的照明光源。电磁透镜的分辨率由衍射效应和球面像差来决定,关键是确定电磁透镜的最佳孔径半角,使得衍射效应埃利斑和球差散焦斑尺寸大小相等

美国研究人员发明新型超薄光学透镜

  据美国航空航天局(NASA)官网8月31日报道,NASA喷气推进实验室(JPL)与加州理工学院研究人员合作开发了一种超薄光学透镜,通过“元表面”(metasurface)技术实现对光路的控制,可应用于先进显微镜、显示器材、传感器、摄像机等多种仪器,使光学系统集成度大大提高,并使透镜制造方式产生革

徕卡体视显微镜中透镜的像差

徕卡体视显微镜中透镜的像差 前面我们讨论的是理想成像的电子光学。在一些待定的条件下,物与像之间有点一点对应和几何相似的关系。然而实际情况与理想的像有偏离,这就是伤差。我们可以根据它们不同的产生原因,用像点径向位置的偏离来作定量描述。 1.几何修差 当电子轨迹不满足倍铀条件时所形成的像差称为几

.生物显微镜特别重视各级透镜

生物显微镜用低放大倍数检查射到荧光屏的光斑时,如发现光斑偏离圆形。这说明存在聚光镜的像散。在高放大倍数时它会导致zui大亮度的损失,并形成不对称的照明孔径角而影响成像质量。因此在调对中的同时,应该对聚光镜消像散

简介生物显微镜透镜的性能

  透镜的性能  透镜是组成显微镜光学系统的最基本的光学元件,物镜目镜及聚光镜等部件均由单个和多个透镜组成。依其外形的不同,可分为凸透镜(正透镜)和凹透镜(负透镜)两大类。  当一束平行于光轴的光线通过凸透镜后相交于一点,这个点称"焦点",通过交点并垂直光轴的平面,称"焦平面"。焦点有两个,在物方空

徕卡体视显微镜中透镜的像差

徕卡体视显微镜中透镜的像差前面我们讨论的是理想成像的电子光学。在一些待定的条件下,物与像之间有点一点对应和几何相似的关系。然而实际情况与理想的像有偏离,这就是伤差。我们可以根据它们不同的产生原因,用像点径向位置的偏离来作定量描述。1.几何修差当电子轨迹不满足倍铀条件时所形成的像差称为几何像差。已知倍

传统光学显微镜与近场光学显微镜

      近场光学显微镜是对于常规光学显微镜的革命。它不用光学透镜成像,而用探针的针尖在样品表面上方扫描获得样品表面的信息。分析了传统光学显微镜与近场光学显微镜成像原理的物理本质和两种显微镜系统结构的异同点。介绍了光纤探针的制作方法。重点讨论了近场探测原理、光学隧道效应及非辐射场的性质。  传统光

光学显微镜的光学原理

显微镜是利用凸透镜的放大成像原理,将人眼不能分辨的微小物体放大到人眼能分辨的尺寸,其主要是增大近处微小物体对眼睛的张角(视角大的物体在视网膜上成像大),用角放大率M表示它们的放大本领。因同一件物体对眼睛的张角与物体离眼睛的距离有关,所以一般规定像离眼睛距离为25厘米(明视距离)处的放大率为仪器的放大

光学显微镜的光学原理

显微镜是利用凸透镜的放大成像原理,将人眼不能分辨的微小物体放大到人眼能分辨的尺寸,其主要是增大近处微小物体对眼睛的张角(视角大的物体在视网膜上成像大),用角放大率M表示它们的放大本领。因同一件物体对眼睛的张角与物体离眼睛的距离有关,所以一般规定像离眼睛距离为25厘米(明视距离)处的放大率为仪器的放大

光学显微镜的光学原理

  显微镜是利用凸透镜的放大成像原理,将人眼不能分辨的微小物体放大到人眼能分辨的尺寸,其主要是增大近处微小物体对眼睛的张角(视角大的物体在视网膜上成像大),用角放大率M表示它们的放大本领。因同一件物体对眼睛的张角与物体离眼睛的距离有关,所以一般规定像离眼睛距离为25厘米(明视距离)处的放大率为仪器的

我科学家研发超级荧光分子开关-对光学显微镜意义重大

  通过采用独特的分子设计,我国光电国家实验室朱明强教授课题组近日研发了一种超级荧光分子开关,将基于二芳基乙烯的荧光分子开关比提高了4个数量级,达到1万倍以上,响应速率也大幅度提高。并且,课题组还利用这种超级荧光分子开关的新特性,制作出具有超级光敏感和应用潜力的全光晶体管,这对我国研制新型超分辨率荧

超高分辨显微镜的性能及工作原理

  显微镜技术经过长期发展,加之近年来物理学界接二连三出现的重大科研进展,终于,在2008年,显微镜发展史上的新成果——超高分辨率荧光显微镜为科学家所研制出。人们预言,它定会成为生物学家的好帮手。   超.jpg   超分辨光学显微镜采用了新一代超高分辨技术,即固态半球超级透镜成像技术,突破

光学显微镜

光学显微镜光学显微镜的原理  光学显微镜主要由目镜、物镜、载物台和反光镜组成。目镜和物镜都是凸透镜,焦距不同。物镜的凸透镜焦距小于目镜的凸透镜的焦距。物镜相当于投影仪的镜头,物体通过物镜成倒立、放大的实像。目镜相当于普通的放大镜,该实像又通过目镜成正立、放大的虚像。经显微镜到人眼的物体都成倒立放大的

光学显微镜

   普通生物显微镜由3部分构成,即:①照明系统,包括光源和聚光器;②光学放大系统,由物镜和目镜组成,是显微镜的主体,为了消除球差和色差,目镜和物镜都由复杂的透镜组构成;③机械装置,用于固定材料和观察方便。   尼康E-600显微镜    显微镜物象是否清楚不仅决定于放大倍数,还与显微镜的分

光学显微镜

1. 光学显微镜以可见光为介质,电子显微镜以电子束为介质,由于电子束波长远较可见光小,故电子显微镜分辨率远比光学显微镜高。光学显微镜放大倍率最高只有约1500倍,扫描式显微镜可放大到10000倍以上。2. 根据de Broglie波动理论,电子的波长仅与加速电压有关:λe=h / mv= h / (

光学显微镜

通常皆由光学部分、照明部分和机械部分组成。无疑光学部分是最为关键的,它由目镜和物镜组成。早于1590年,荷兰和意大利的眼镜制造者已经造出类似显微镜的放大仪器。光学显微镜的种类很多,主要有明视野显微镜(普通光学显微镜)、暗视野显微镜、荧光显微镜、相差显微镜、激光扫描共聚焦显微镜、偏光显微镜、微分干涉差

徕卡生物显微镜——电子透镜的像差

前面我们讨论的是徕卡生物显微镜理想成像的电子光学。在一些待定的条件下,物与像之间有点一点对应和几何相似的关系。然而实际情况与理想的像有偏离,这就是像差。我们可以根据它们不同的产生原因,用像点径向位置的偏离来作定量描述。1,徕卡生物显微镜几何修差当电子轨迹不满足倍铀条件时所形成的像差称为几何像差。已知