碳卫星利用高光谱进行全球“碳普查”

我国首颗二氧化碳监测科学实验卫星即将发射升空,它将用慧眼一探全球二氧化碳变化的秘密。 “我国还没有这么复杂观测模式的民用卫星,它通过5种观测模式的组合,完成对全球二氧化碳的探测,卫星装载的高光谱二氧化碳探测仪有2000多个通道,光谱解析度极高,卫星研制难度极大。”碳卫星首席应用科学家卢乃锰告诉科技日报记者。 利用光谱吸收特性一探究竟 与以往的气象卫星不同,碳卫星是在可见光和近红外谱段,利用分子吸收谱线探测二氧化碳浓度。“大气在太阳光照射下,二氧化碳分子会呈现光谱吸收特性,通过碳卫星对二氧化碳光谱吸收线的精细测量,就可以反演出大气二氧化碳的浓度。”卢乃锰说。 反演验证系统是获取卫星数据后计算出二氧化碳和气溶胶分布状况的关键环节,也是卢乃锰在采访中反复提及的技术关键。通俗来讲,太阳的光谱是确定的,如果已知二氧化碳浓度等大气状况,根据模型,计算出卫星应该观测到的光谱,是正演;而根据卫星获取的数据,由模型反算出二氧化碳浓度,......阅读全文

具有强可见近红外吸收和高光热转换的超碳纳米点获进展

  近日,中科院长春光机所曲松楠研究员课题组首次研制出在可见-近红外区具有强吸收和高光热转换效率的超碳纳米点,该工作突破了碳基纳米材料在可见到近红外波段的吸收系数低的限制,并实现近红外区高达53%的光热转换效率,为该类材料国际上报道的最高值,在开发基于碳纳米点的光热治疗试剂方面具有重要的应用前景。该

中国“碳卫星”大气二氧化碳浓度反演算法取得进展

  中国全球二氧化碳监测科学实验卫星(碳卫星,TanSat)是依托于“十二五”国家高技术研究发展计划地球观测与导航技术领域“全球二氧化碳监测科学实验卫星与示范”重大项目和中国科学院 “应对气候变化的碳收支认证及相关问题” 战略性先导科技专项, 由国家科技部和中国科学院共同资助,是继2009年

碳卫星在轨测试阶段任务取得圆满成功

   碳卫星在轨示意图和部分CO2定标曲线  2016年12月22日,中国科学院微小卫星创新研究院抓总研制的我国首颗全球二氧化碳监测科学实验卫星(简称“碳卫星”)在酒泉卫星发射中心成功发射。2017年8月31日,中国气象局在京组织召开了碳卫星在轨测试总结评审会。评审结论表明,碳卫星已完成在轨测试全部

高光谱综合观测卫星首批影像成果发布

原文地址:http://news.sciencenet.cn/htmlnews/2023/3/497237.shtm

高光谱综合观测卫星首批影像成果发布

国家航天局28日发布了高光谱综合观测卫星首批影像成果,包括全球臭氧柱浓度监测图、全球二氧化氮柱浓度监测图、亮温监测图、海冰监测图、高光谱数据立方体图等高光谱数据图像,展现了高光谱综合观测卫星在温室气体探测、内陆水体水质定量遥感监测、地物精细分类、矿产资源调查等方面的应用情况。  高光谱综合观测卫星是

红外光谱识谱歌

红外光谱识谱歌(与你共享)1 Q& A  p& N3 B) H* d8 {1 }8 Y8 l& L$ G. K& [! c4 b4 W外可分远中近,中红特征指纹区,: q& ], g4 N( p; d( I" ]1300来分界,注意横轴划分异。( e3 X. y- V( s$ b看图要知红外仪,弄清

中国将于2016年发射“碳卫星”进行二氧化碳监测

  中国将于2016年择机发射首颗“碳卫星”,旨在为中国节能减排等宏观决策提供数据支撑。记者2日从中国科学院获悉,该卫星载荷研制进入冲刺阶段。  该卫星始于中国“十二五”期间设置的“全球二氧化碳监测科学实验卫星与应用示范”重大项目。以二氧化碳遥感监测为切入点,研制并发射以高光谱二氧化碳探测仪、多谱段

近红外及中红外光谱法测量原理

关于红外分光的原理,先从zui基本的中红外领域的吸收讲述。    某物质照射中红外光后,中红外光一部分被该物质吸收。被吸收的中红外光的波长和吸收程度(吸光度或透射率)由该物质决定。因此测量中红外吸收光谱可以得知物质固有光谱。    振动频率ν的光被分子吸收后,分子的能量只增加E=hν(h为普朗克定数

近红外光谱仪应用邻域

应用领域编辑葡萄酒乙醇,含糖量,有机酸,含氮值,pH 值等白酒 原料中的水分,淀粉,支链淀粉;酒醅中的水分,pH 值,淀粉和残糖等啤酒大麦原料中的水分,麦芽糖;啤酒中的乙醇和麦芽糖等饮料 (可乐、 果汁等)咖啡因,糖分,酸度,果汁真伪鉴别调味品 (酱油、 醋等)蛋白质,氨基酸总量,总糖,还原糖,氯化

近红外光谱仪的简介

  近红外光谱技术(NIR)是 90 年代以来发展最快、最引人注目的分析技术之一。随着 NIR 分析方法的深入应用和发展,已逐渐得到大众的普遍接受和官方的认可。 1978年美国和加大就采用近红外法作为分析小麦蛋白质的标准方法, 1998 年美国材料试验学会制订了近红外光谱测定多元醇(聚亚安酯原材料)

近红外光谱仪的概述

  近红外光谱技术(NIR)是90年代以来发展极快、十分引人注目的分析技术之一。随着NIR分析方法的深入应用和发展,已逐渐得到大众的普遍接受和官方的认可。1978年美国和加大就采用近红外法作为分析小麦蛋白质的标准方法,1998年美国材料试验学会制订了近红外光谱测定多元醇(聚亚安酯原材料)中羟值含量的

色散型近红外光谱仪器

  色散型近红外光谱仪器的分光元件可以是棱镜或光栅。为获得较高分辨率,现代色散型仪器中多采用全息光栅作为分光元件,扫描型仪器通过光栅的转动,使单色光按照波长的高低依次通过样品,进入检测器检测。根据样品的物态特性,可以选择不同的样品检测器元件进行投射或反射分析。  该类型仪器的优点:  使用扫描型近红

如何选择近红外光谱仪

    初从事近红外光谱分析的人员常常会提出这样的问题:什么样的近红外光谱仪器最好?如何选择一台合适的近红外光谱仪器?实际上,“最好”仪器的定义是很难确定的,“最好”的仪器也是不存在的。因为对某一特定的仪器所提出的各项要求是随着所需要解决的具体问题的不同而有所差异的。为了帮助使用者根据特定的需要选择

色散型近红外光谱仪器

色散型近红外光谱仪器的分光元件可以是棱镜或光栅。为获得较高分辨率,现代色散型仪器中多采用全息光栅作为分光元件,扫描型仪器通过光栅的转动,使单色光按照波长的高低依次通过样品,进入检测器检测。根据样品的物态特性,可以选择不同的样品检测器元件进行投射或反射分析。该类型仪器的优点:使用扫描型近红外光谱仪可对

近红外光谱仪原理介绍

  近红外光(Near Infrared,NIR)是介于可见光(VIS)和中红外光(MIR)之间的电磁波, ASTM 定义的近红外光谱区的波长范围为 780~2526nm (12820~3959cm1),习惯上又将近红外区划分为近红外短波(780~1100nm)和近红外长波(1100~2526nm)

近红外光谱类型及优缺点

  近红外光谱仪种类繁多,根据不用的角度有多种分类方法。从应用的角度分类,可以分为在线过程监测仪器、专用仪器和通用仪器。从仪器获得的光谱信息来看,有只测定几个波长的专用仪器,也有可以测定整个近红外谱区的研究型仪器;有的专用于测定短波段的近红外光谱,也有的适用于测定长波段的近红外光谱。较为常用的分类模

近红外光谱仪的优点

近红外光谱仪的优点      1、 分析速度快,一般分析一个样品的时间约为1分钟。      2、不需要对样品进行化学处理,分析步骤简单。      3、无消耗品,无环境污染,不破坏样品,经济。      4、一次测试能够同时得到多种成分或指标,甚至开发多种新指标而没有"通道"限制。      5、

近红外光谱仪相关介绍

近红外光谱分析技术是一项基于近红外光谱技术与化学计量学分析模型技术的综合分析技术,可实现对含有C-H、N-H、O-H等有机官能团的样品进行快速、无损、定性/定量分析,是现场快速筛查和加工过程实时检测的理想手段。近红外光谱仪广泛应用于农业、饲料、粮油、食品、石油化工、环境等行业。近红外光谱仪主要广泛应

近红外光谱法测量酸值

近红外光谱法Chen Man等用0.15%(w/w)酯酶于印℃恒温水浴下酶解天然棕榈油,配制成不同游离脂肪酸浓度梯度的棕榈油,利用近红外光谱扫描,由多元线性回归创建校正模型,即可得出棕榈油中游离脂肪酸含量此法测定速度较快,总分析时间为5min,环境温和 。Ahmed A1一Alawi等开发了一种傅里

近红外光谱技术的发展历史

  20世纪初, 人们采用摄谱的方法首次获得了有机化合物的近红外光谱, 并对有关光谱特征进行了解释。预示着NIR有可能作为分析技术的一种手段得到应用。50年代中期, 随着简易型NIR仪器的出现, 近红外光谱的应用在测定农副产品的品质方面得到广泛的使用。但由于样品背景、基体、仪器的稳定性等问题, 测量

近红外光谱仪工作原理

近红外光谱仪简介近红外光谱仪技术(NIR)是90年代以来发展最快、最引人注目的分析技术之一。随着NIR分析方法的深入应用和发展,已逐渐得到大众的普遍接受和官方的认可。1978年美国和加大就采用近红外法作为分析小麦蛋白质的标准方法, 1998 年美国材料试验学会制订了近红外光谱测定多元醇(聚亚安酯原材

近红外光谱分析原理

  近红外光谱主要是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的,记录的主要是含氢基团X-H(X=C、N、O)振动的倍频和合频吸收。不同团(如甲基、亚甲基,苯环等)或同一基团在不同化学环境中的近红外吸收波长与强度都有明显差别,NIR  光谱具有丰富的结构和组成信息,非常适合用于碳氢有机

近红外光谱类型及优缺点

  近红外光谱仪种类繁多,根据不用的角度有多种分类方法。从应用的角度分类,可以分为在线过程监测仪器、专用仪器和通用仪器。从仪器获得的光谱信息来看,有只测定几个波长的专用仪器,也有可以测定整个近红外谱区的研究型仪器;有的专用于测定短波段的近红外光谱,也有的适用于测定长波段的近红外光谱。较为常用的分类模

近红外光谱存在的部分问题

    近红外光谱技术在许多领域的检测中被作为认证的检测技术来使用,例如食品,与此同时,在纺织、聚合物、药物、石油化工、生化和环保等领域也得到了广泛的应用。此外该技术在检测物质的纯度,解释物质的结构,预测、评价生物的某些生理现象及变化,监测一些天体的变化等领域也有一定的价值。但是,其也存在一定的问题

碳碳单键,碳碳双键在红外光谱中有振动吸收吗

有的。碳碳单键在1300-1500cm-1,双键在1600-1700

二氧化碳监测将有中国数据

  全球大气二氧化碳浓度如何变化?明年将有望产生中国数据。今年12月,我国首颗碳卫星将发射升空。11月8日,这颗由中科院微小卫星创新研究院研制的卫星出厂离沪,运往酒泉卫星发射中心。  碳卫星最主要作用是监测全球的二氧化碳浓度在不同区域、不同季节的变化,科学家由此可以了解大气二氧化碳的分布和流向。全球

我国首次实现全谱段高光谱卫星对大气和陆地进行观测

   近日,以中国电子科技集团公司第11研究所自主研发的多谱段集成红外探测器为核心器件的高分五号卫星正式投入使用,标志着国家高分专项打造的高空间分辨率、高时间分辨率、高光谱分辨率的天基对地观测能力中最有应用特色的高光谱能力形成。用全谱段高光谱卫星对大气和陆地进行综合观测,在国际上尚属首次。  高分五

大气探测激光雷达、宽幅成像光谱仪成功升空

北京时间4月16日2点16分,大气环境监测卫星在我国山西太原卫星发射中心成功发射。中国科学院上海光机所研制的大气探测激光雷达、中国科学院上海技物所研制的宽幅成像光谱仪随大气环境监测卫星成功升空。 大气环境监测卫星由中国航天科技集团八院抓总研制,是国际首颗具备二氧化

近红外与中红外光谱分析的区别

近红外光(NIR)是介于可见区和中红外区间的电磁波,不同文献中对其波长范围的划分不尽相同,美国试验和材料协会(ASTM)规定为700 nm至2500 nm。NIR常被化分为短波近红外(SW-NIR)和长波近红外(LW-NIR),其波段范围分别为700—1100 nm和1100—2500 nm。180

近红外与中红外光谱分析的区别

近红外光(NIR)是介于可见区和中红外区间的电磁波,不同文献中对其波长范围的划分不尽相同,美国试验和材料协会(ASTM)规定为700 nm至2500 nm。NIR常被化分为短波近红外(SW-NIR)和长波近红外(LW-NIR),其波段范围分别为700—1100 nm和1100—2500 nm。