Antpedia LOGO WIKI资讯

上海光机所高非线性石英光子晶体光纤研制取得进展

中国科学院上海光学精密机械研究所高功率激光单元技术研发中心研究员廖梅松带领非线性光纤课题组刘垠垚、吴达坤等人,在高非线性光子晶体光纤的研制方面取得了新进展。 高非线性光子晶体光纤由于具有普通阶跃型光纤所不具备的特殊色散和高非线性,是产生超连续谱激光的核心器件。超连续谱是一种具有超宽的光谱和高度方向性的高亮度宽带光源,在生物医学、超快光谱学、光纤通信、高分辨成像、传感技术等方面有着重要应用。 高非线性石英光子晶体光纤由多圈尺寸在波长量级的空气微孔包围细小的纤芯构成,其结构精细复杂,对拉制工艺难度极高。该课题组在前期非线性光纤结构模拟设计工作基础上,采用堆叠法制作特殊结构的光纤预制棒,通过精确控制光纤拉制过程中的温度、张力、速度等参数,研制出了适合1μm掺镱光纤激光器泵浦的光子晶体光纤,其外径120μm,纤芯直径5μm,零色散波长为1040nm。采用该光纤在1055 nm飞秒光纤激光器的泵浦下,获得了光谱覆盖整个可见光波段的......阅读全文

大模场光子晶体光纤研制成功

  今天,记者从中科院上海光机所获悉,该所陈丹平与胡丽丽率领的石英光纤材料课题组在大模场有源光子晶体光纤的研制方面取得了重要进展,成功制备获得了纤芯直径大于50微米、NA(数值孔径)小于0.03的大芯径光子晶体光纤,并在皮秒脉冲放大器中实现平均功率超过百瓦、单脉冲能量大于微焦耳量级的高光束质量输出。

高非线性石英光子晶体光纤研制取得进展

  中国科学院上海光学精密机械研究所研究员廖梅松带领非线性光纤课题组刘垠垚、吴达坤等人,在高非线性光子晶体光纤的研制方面取得了新进展。  由于高非线性光子晶体光纤具有普通阶跃型光纤所不具备的特殊色散和高非线性,是产生超连续谱激光的核心器件。超连续谱是一种具有超宽的光谱和高度方向性的高亮度宽带光源,在

物理所团队等制备出超高非线性的二维材料复合光纤

  随着光通信技术的发展,光纤已成为现代信息社会的重要支撑。非线性光纤作为一种特殊用途光纤,在新型光纤通讯技术中具有重要应用和发展前景,并在光波长转换、超快光纤激光和超连续激光等光物理基础以及器件研究等领域具有应用潜力。然而,传统石英光纤仅表现出微弱的奇数阶非线性效应,限制其在非线性光学领域的应用。

上海光机所在硅酸盐全固态光子晶体光纤研究方面取得进展

  中国科学院上海光学精密机械研究所高功率激光单元技术研发中心利用自行制备的1.2wt% 钕离子掺杂的N0312型号高质量硅酸盐玻璃和其他商用的未掺杂硅酸盐玻璃,通过理论设计模拟,最终利用管棒法和堆积法相结合的方法,成功制备了纤芯直径为45微米的单模激光输出硅酸盐全固态光子晶体光纤,在波长1064n

拉曼光谱技术综述

   【摘要】本文从拉曼散射原理出发,介绍了拉曼技术的特征,以及拉曼技术的优势和不足,从激光技术和纳米技术出发介绍了当前拉曼技术的广泛发展和应用。综述了近年来了曼技术的主要的分析技术。涉及拉曼光谱技术的发展简史,发展现状和最新研究进展等方面。  1、拉曼光谱的发展简史  印度物理学家拉曼于1928年

近场光学的近场光学显微镜的基本类型

      近场光学显微镜 的主要目标是获得与物体表面相距小于波长K的近场信息, 即隐失场的探测。虽然已经出现了许多不同类型的近场光学显微仪器, 但它们有一些共同的结构。如同其他扫描探针显微镜( STM、AFM…), 近场光学显微镜包括: ( 1)探针,(2) 信号采集

中科院长春应化所2016第一批科研仪器采购资格预审公告

  1.用户单位:中国科学院长春应用化学研究所   2.项目编号:CIAC2016001   3.项目名称:中国科学院长春应用化学研究所2016年仪器设备采购项目(第一批)   4.采购内容 序号 设备名称 采购数量 1 原子分辨率双球差透射电子显微镜&nbs

拉曼光谱仪器测试原理与仪器使用指南

  基于印度科学家C.V.拉曼(Raman)发现拉曼散射效应:不同的入射光频率的散射光谱进行分析所得到的分子振动、转动的信息,并应用于分子结构分析研究的一种分析方法,称为拉曼光谱(Raman spectra)。其中,拉曼光谱是一种散射光谱。  1. 激光拉曼光谱基本原理  激光入射到样品,产生散射光

拉曼光谱原理和图解

  基于印度科学家C.V.拉曼(Raman)发现拉曼散射效应:不同的入射光频率的散射光谱进行分析所得到的分子振动、转动的信息,并应用于分子结构分析研究的一种分析方法,称为拉曼光谱(Raman spectra)。其中,拉曼光谱是一种散射光谱。  1. 激光拉曼光谱基本原理  激光入射到样品,产生散射光

必收藏丨超全面拉曼光谱、红外光谱、XPS的原理及应用干货

  拉曼光谱的原理及应用  拉曼光谱由于近几年来以下几项技术的集中发展而有了更广泛的应用。这些技术是:CCD检测系统在近红外区域的高灵敏性,体积小而功率大的二极管激光器,与激发激光及信号过滤整合的光纤探头。这些产品连同高口径短焦距的分光光度计,提供了低荧光本底而高质量的拉曼光谱以及体积小、容易使用的

拉曼光谱仪器测试原理与仪器使用指南

  基于印度科学家C.V.拉曼(Raman)发现拉曼散射效应:不同的入射光频率的散射光谱进行分析所得到的分子振动、转动的信息,并应用于分子结构分析研究的一种分析方法,称为拉曼光谱(Raman spectra)。其中,拉曼光谱是一种散射光谱。  1   激光拉曼光谱基本原理  激光入射到样品,产生散射

五部委发布137项优先发展高技术产业领域指南(2011年度)

  发改委网站2011年10月20日刊文,由发改委、科技部、工信部、商务部、知识产权局联合研究审议的 《当前优先发展的高技术产业化重点领域指南(2011年度)》,现予以发布。《指南》确定了当前优先发展的信息、生物、航空航天、新材料、先进能源、现代农业、先进制造、节能环保和资源综合利用、海洋、高技

关于拉曼光谱的83个问答总结(上)

  一、测试了一些样品,得到的是Ramanshift,但是文献是wavenumber,不知道它们之间的转换公式是怎么样的?激光波长632.8nm。  1. 两者是一回事。ramanshift即为拉曼位移或拉曼频移,频率的增加或减小常用波数差表示,拉曼光谱仪得到的谱图横坐标就是波数

拉曼问题汇总:拉曼光谱百问解答总结!

拉曼光谱(Raman Spectra),是一种散射光谱。拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。今天分享一些问答集锦,希望对你有帮助。一、测试了一些样品,得到的

太赫兹技术——癌症成像的新视角

据麦姆斯咨询报道,太赫兹(THz)位于电磁波谱的微波和红外区域之间,为医学和生物学应用带来了巨大的希望。太赫兹波段——频率范围在0.3-3x1012Hz——为生物细胞的内部探视提供独特视角,并提供了一种非电离式的癌症成像方法。随着实验室太赫兹光源和敏感探测器的引入,我们能否很快看到太赫兹技术

激光拉曼光谱的发展历史、原理以及应用

拉曼光谱(Raman spectra),是一种散射光谱。拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。  1、拉曼光谱的发展历史  印度物理学家拉曼于1928年用水银

COMSOL-RF模块电磁波透射率计算问题的探讨

透/反射率的计算在电磁波研究中非常常见,计算结果的准确性与材料参数定义,边界条件的选择,网格剖分有十分紧密的关系。以下是个人关于电磁波透/反射率计算问题的经验整理,如有错漏欢迎指正和补充。需要计算透/反射率的器件通常可分为几种类型:1. 波导器件如各类波导分路器,光纤Bragg光栅,其入射端及出射端

拉曼问题汇总:拉曼光谱百问解答总结(四)

  三十七.有几种激光光源?   1.氩离子、半导体、氦氖;   2.可见光激光器应用最多的是氩离子激光器,可产生:10种波长的激光,其中最强的是488纳米(蓝光)和514纳米(绿光)激光器,现在最为常用,性能十分稳定的是514纳米激光器;另外,532纳米固体二极管泵浦激光器、63

关于拉曼光谱的83个问答总结(下)

  关于拉曼光谱的83个问答总结(上)  四十一、用普通拉曼光谱仪对肿瘤细胞和正常细胞的光谱进行检测,我发现信号完全被玻璃信号所掩盖。但是培养细胞的容器大都是玻璃的,请问各位高手,我该如何设计实验方案?  1. 改变光路,从上往下照,而样品上面不要有石英或者玻璃,光直接