果蝇幼虫大脑部分神经元连接图绘出

据最新一期《自然》杂志报道,美国约翰·霍普金斯大学领导的国际团队日前绘制出果蝇幼虫大脑学习和记忆中心的完整神经元连接图,从而为最终绘出所有动物的大脑神经元连接图迈出了坚实的一步。 该项研究中使用的果蝇幼虫大脑部分,相当于哺乳动物的大脑皮层,其中包括大约1600个神经元,而整个果蝇幼虫大脑大约有1万个神经元,成年果蝇大脑则包含10万个神经元。处于哺乳动物顶端的人类大脑包含860亿至1000亿个神经元。 霍普金斯大学影像科学中心对果蝇幼虫大脑中发现的神经元连接进行了统计分析,结果发现了6种新的神经元连接类型,这有助于揭示果蝇幼虫大脑的工作机理。此项新研究将重心严格限定在绘制称为“连接组”(Connectome)的结构连接图谱,而不是研究这些连接与特定行为间的关系。 此次研究得到了美国国家科学基金会(NSF)的资助。NSF负责落实美国前总统奥巴马提出的总额为1亿美元的“脑计划”项目。......阅读全文

果蝇幼虫大脑部分神经元连接图绘出

  据最新一期《自然》杂志报道,美国约翰·霍普金斯大学领导的国际团队日前绘制出果蝇幼虫大脑学习和记忆中心的完整神经元连接图,从而为最终绘出所有动物的大脑神经元连接图迈出了坚实的一步。  该项研究中使用的果蝇幼虫大脑部分,相当于哺乳动物的大脑皮层,其中包括大约1600个神经元,而整个果蝇幼虫大脑大约有

解析果蝇幼虫“主演”的黑白短片

   Marta Zlatic拥有可谓最冗长乏味的影片资料库。在她位于美国弗吉尼亚州霍华德·休斯医学研究所珍妮莉亚研究园区的实验室中,这位神经科学家储存了2万多个小时、由果蝇幼虫“主演”的黑白短片。这些影片的主角正在做一些日常的事情,比如蠕动、爬行,但它们能帮助回答现代神经科学中的最重要问题之一 —

果蝇幼虫完整“脑图谱”绘制完成

3月20日电 一个国际科研团队日前在美国《科学》杂志上发表论文说,他们绘制出了果蝇幼虫脑部的完整连接组,即包含所有神经元及其连接状况的线路图。这是第一份完整的昆虫“脑图谱”,将成为神经科学研究的重要工具,并可能为人工智能发展提供参考。  英国剑桥大学、美国约翰斯·霍普金斯大学等机构的研究人员经过12

《科学》发表我国科学家关于果蝇幼虫光偏好行为成果

  人类有爱有恨,有欢喜有厌恶,儿童爱不释手的玩具可能被成人不屑一顾。然而,这种喜好并不是人类的ZL,低等动物同样会有抉择。成语“飞蛾扑火”诠释了昆虫为求光明甚至不惜牺牲,然而,昆虫幼虫恰恰喜欢茫茫黑暗却往往不为人知。  近日,中国科学院生物物理研究所研究员刘力、副研究员龚哲峰等初步揭示了

上海生科院揭示果蝇幼虫机械性伤害刺激感受的分子机制

  11月6日,中国科学院上海生命科学研究院神经科学研究所王佐仁研究组在Cell Reports 学术期刊在线发表了题为《PPK26在果蝇幼虫机械性伤害刺激感受中的作用》的研究文章。该工作通过遗传操作、免疫组化以及行为学等实验揭示了DEG/ENaC通道家族成员PPK26分子在果蝇幼虫机械性伤害刺激感

-上海生科院揭示果蝇幼虫机械性伤害刺激感受的分子机制

  11月6日,中国科学院上海生命科学研究院神经科学研究所王佐仁研究组在Cell Reports 学术期刊在线发表了题为《PPK26在果蝇幼虫机械性伤害刺激感受中的作用》的研究文章。该工作通过遗传操作、免疫组化以及行为学等实验揭示了DEG/ENaC通道家族成员PPK26分子在果蝇幼虫机械性伤害刺激感

生物物理所研究发现决定偏好行为的神经基础

  近日,Science在线发表了中国科学院生物物理研究所刘力课题组龚哲峰副研究员等人关于发现果蝇幼虫中央脑的两对神经元足以调节果蝇幼虫对于不同光强条件的偏好行为的研究成果。他们发现,增加这两对神经元的活性会促进幼虫的避光行为,而抑制这两对神经元的活性则能够逆转幼虫的避光行为为趋光行为

大脑能“看见”的东西比眼睛更多

  据物理学家组织网11月2日(北京时间)报道,最近,美国弗吉尼亚大学通过研究果蝇幼虫的视觉系统发现,在“观看”时,视力的重要性可能远不如大脑把光点加工处理成复杂图像的能力。相关论文发表在最近的《自然·通讯》杂志网站上。   果蝇幼虫的眼睛只有24个光受体(人眼包含的光受体超过1.25亿),从它们

研究发现大脑能“看见”的东西比眼睛更多

  这并不是新鲜的发现,从走马灯时代甚至更早,我们就对这个原理完全掌握并灵活运用,现在最先进的3D电影和军用雷达技术等也都与此密切相关。过去它被称为大脑的错觉,现在看来却是大脑专门进化发展而来的关乎生存的能力。当然,这项研究表明我们已从利用原理向探讨生物学基础转变,从研究果蝇大脑对24个光点的处理起

Science:第一张昆虫全脑图谱绘制完成

  美国约翰斯•霍普金斯大学和英国剑桥大学领导的国际团队完成了迄今为止最先进的昆虫大脑图谱,首次描绘了果蝇幼虫大脑中的每一个神经连接,这是神经科学领域的一项里程碑式成就,使科学家更接近对思维机制的真正理解,支持未来的大脑研究并激发新的机器学习架构。研究成果9日发表在《科学》杂志上。昆虫大脑中的完整神

3016个神经元和54.8万个突触,首张昆虫大脑图谱绘就

图片来源:Eye of Science/Science Photo Library科学家绘制了第一张完整的昆虫大脑图谱,包括所有神经元和突触。这是理解大脑如何处理感官信息流并将其转化为行动的里程碑式成就。相关论文3月9日发表于《科学》。果蝇是一种重要的模式动物,黑腹果蝇幼虫的大脑比罂粟籽还小。这项研

Science绘制新型神经元参考图谱

  报道 神经科学家们获得了一份新的指南,可为他们开展研究工作了解果蝇神经结构的功能提供参考。来自霍华德休斯医学研究所和约翰霍普金斯大学的研究人员,记录了整个果蝇幼虫大脑活化神经元的行为效应并对其进行了分类。研究人员还发现,幼虫大脑的1万个神经元大多数为活化细胞。他们的研究成果在线发表在3月27

迄今最大果蝇全脑连接体图谱公布

科技日报北京12月5日电 (记者刘霞)据英国《新科学家》网站近日报道,英国研究人员绘制出了果蝇幼虫大脑内3013个神经元和544000个突触的完整图谱,是迄今最大的全脑连接体,为描述小鼠和人类等更复杂动物的大脑奠定了基础。这一图谱也有助于研究人员了解信号在果蝇大脑内如何传播、大脑内不同区域如何相互作

-果蝇知道该喝什么“酒”

  通常,果蝇的幼虫在含有合适的酒精浓度食物中生长,会更健康,体型更大,并且能够更好地防止寄生虫寄生。作为它们的父母,成年果蝇也知道什么样的酒精浓度最适合后代生存,在产卵的时候为其选择最佳的酒精浓度,以保障后代健康生长。   成年果蝇的这一偏好机制,日前被研究者揭示,研究人员表示,果蝇大脑中有两种

胶质细胞调控神经轴突再生机制研究有了新成果

  2023年4月6日23点,Developmental Cell 期刊在线发表题为《胶质细胞传递和腺苷信号通路促进神经损伤再生》的研究论文。该研究由中国科学院脑科学与智能技术卓越创新中心(神经科学研究所)李毅研究组与美国麻省大学医学院的相杨团队合作完成。该研究以果蝇幼虫和小鼠作为研究的模型动物,发

虻虫幼虫自带“军刀”

  澳大利亚著名的刺客虻,是一种非常可怕的动物。它们的大小和一个瓶盖相当,并且身上带有类似的金属光泽。刺客虻会在半空中伏击蝴蝶和蜻蜓,咬住它们然后将其毒死。如今,科学家发现,即便刺客虻的幼虫也极其凶险。  研究人员日前在《澳大利亚昆虫学》杂志上报告称,这些蛆虫的嘴巴“相当于昆虫里的瑞士军刀”。利用扫

中科院王佐仁研究组最新Cell子刊文章

  在果蝇幼虫中,IV型树突分支(da)神经元是一种多觉型伤害性感受器(polymodal nociceptor)。中科院神经科学研究所的研究团队发现,在IV型da神经元对机械痛觉的感知中,ppk26(CG8546)起到了重要作用。这一成果发表在十一月六日的Cell Reports杂志上。文章的通讯

Cell:气味对造血干细胞的影响

  造血过程受到多种因素的紧密调节,环境信号和生理信号(例如激素和昼夜节律)都会对造血祖细胞产生影响。日前,Cell上发表的一项新研究指出,果蝇的嗅觉也能影响造血祖细胞的命运。   嗅觉是果蝇幼虫觅食能力的关键,能够帮助幼虫在竞争性环境中生存下来。研究显示,无法感知气味会使果蝇幼虫的造血祖细胞成熟

东南大学最新文章:建立研究新果蝇品系

  果蝇Neurexin(DNRX)在突触的结构发育和突触功能上发挥着重要的作用. 然而迄今为止, DNRX 的时间和空间表达模式还没有被系统地研究. 来自东南大学生命科学研究院, 发育与疾病相关基因教育部重点实验室的研究人员建立了一株新的DNRX-Gal4转基因果蝇品系, 并评价了这株转基因Gal

院士伉俪Nature揭示神经学重要秘密

  用一根睫毛温柔地抚摸新生果蝇幼虫柔软的身体,它会改变运动来对这种“呵痒”做出反应。通过观察这一现象,来自加州大学旧金山分校的科学家揭示了温柔触觉的分子基础,相关论文发表在《自然》(Nature)杂志上。作为我们最基本的感觉之一,当前科学家们对于温柔触觉却知之甚少。   领导这一研究的是著名的詹

TDP43基因突变导致蛋白质聚集并产生神经毒性

生物物理所等发现TDP-43基因突变导致蛋白质聚集并产生神经毒性  6月12日,Nature Structural & Molecular Biology在线发表了中国科学院生物物理研究所国家“千人计划”人才吴瑛课题组及其合作团队关于TDP-43基因突变导致其蛋白质聚集并产生神经毒性的研究论文(

高速成像技术(VR技术)在精神疾病方面的应用

  近日,工程师和神经科学家们利用高速成像技术联合制作了在果蝇幼虫运动时,其体内单个神经活动、伸展和打开的 3D 视频,表明VR技术有助于治疗精神疾病。   从这些视频中收集的数据揭示了一种被称为本体感受神经元的神经细胞如何协同工作,以帮助身体感知其在空间中的位置。这一壮举的实现得益于哥伦比亚大学

两位研究生发表Nature子刊:“温水煮青蛙”的奥秘

  “温水煮青蛙”的故事应该很多人都听过,这是一个经典的青蛙实验,科学家们发现在温度变化很慢的时候动物对温度的敏感性就会降低。事实上包括人在内的许多动物都有这个特点,但是这到底是为什么呢?  为了解析这一现象背后的分子机制,来自加州大学圣塔芭芭拉分校的Craig Montell教授带领他的两位研究生

神经元是如何维持其通信能力的钙离子通道的?

神经系统的运作是基于神经元之间通过被称为突触的连接进行信号交流。当钙离子通过离子通道进入充满了携带分子信息的小囊泡的“活性区”时,细胞之间得以“交谈”。带电的钙离子使小囊泡“融合”到突触前神经元的外膜,将用于交流的化学物质释放到突触后细胞中。在一项新的研究中,麻省理工学院Picower学习和记忆研究

蚂蚁“产奶”哺育幼虫

蚂蚁化蛹。图片来源:Daniel Kronauer 哺乳动物的幼崽由母体分泌的乳汁喂养长大,这一特点正是哺乳动物得名的原因。然而美国科学家发现,蚂蚁也会分泌类似“乳汁”的营养液。相关论文近日发表于《自然》。 蚂蚁是完全变态昆虫,要经过卵、幼虫、蛹等阶段才发展为成虫。研究人员发现,蚂蚁的

节食有益于健康-这背后的神经学机制你知道吗?

  生物通报道:最近,来自美国Buck研究所的一项研究,首次在神经元水平上对于“节食的益处”提供了解释,从而对于“节食如何可以带来健康益处”提出了一种可能的机制。12月1日在《Neuron》发表的研究中,研究人员使用果蝇幼虫发现,存在一条分子途径,可响应营养匮乏,并降低神经元和肌肉细胞交界处的突触活

首次拍摄到复杂生物神经系统活动影像

 图像显示果蝇在向后爬(左)和向前爬(右)时神经系统的图像。蓝色代表首先被激活的区域,红色代表最后才被激活的区域。   美国科学家日前成功拍摄到一段果蝇幼虫在移动时全身神经系统活动的动态影像。对如此复杂且处于运动之中的生物体来说,此举尚属首次。研究人员认为,该研究将为人类大脑等更复杂神经

宋源泉等发现Piezo离子通道抑制神经轴突再生的功能

  由于绝大多数成熟神经元并不具备再生能力,神经系统损伤尤其是中枢神经系统的损伤,常常导致难以恢复的严重后果。例如,当人脊髓因外伤受到损伤时,由于脊髓神经元无法再生,其功能无法得以修复,将导致脊髓损伤以下的身体部位瘫痪。最近一百多年,科学家们已经对神经系统损伤修复的机制进行了大量的研究和探索。普遍观

多功能诱虫灯田间幼虫效果检测

根据病虫调查统计器检 测显示的结果来看,棉铃虫是一种杂食性而且繁殖能力很强的昆虫,在世界大部分地方均有发生。棉铃虫危害的作物有小麦、玉米、棉花、花生等多种重要农作物。 在棉花上主要为害幼铃、蕾和花,造成僵瓣、烂铃,每年都会给棉花生产造成严重的损失。新疆又是我国的主要棉产区,其植棉面积占全国的三分之一

Nature:揭示不同时间内干细胞的变化

  对于果蝇幼虫来说,神经干细胞能在不同的时间里生成不同的细胞类型,这种调控变化是由基因转录因子多级联协调完成的。在Nature杂志上,两个研究组分别针对这一方面展开了研究,证明了指向神经干细胞发育模式中的一个时间要素和调控机制。   来自俄勒冈大学的研究人员证实一类特定的干细胞:II型成神经细胞