我国首次发现RNA甲基化修饰可调控脊椎动物配子成熟

我国科研人员在国际上首次发现脊椎动物的配子成熟需要甲基转移酶mettl3催化的m6A甲基化修饰,从而揭开了该甲基化修饰可调控脊椎动物配子成熟这一此前尚未为人所知的秘密。(2018(第二届)模式动物与重大疾病动物模型研究与应用研讨会) 记者13日从中国科学院水生生物研究所了解到,该所科研人员以模式生物斑马鱼为对象开展研究,成功获得了可存活的mettl3基因突变的合子缺失型斑马鱼突变体。与野生型比较,突变体雌鱼卵巢中早期发育阶段的卵细胞没有明显差异,但成熟发育阶段的FG时期(完全成长阶段)卵细胞显著下降,并且可以发生生殖泡破裂而成熟的FG期卵细胞比例也显著下降。在突变体雄鱼中,精原细胞和精母细胞较野生型显著增加,且精母细胞可以正常联会,但是成熟精子的数量和精子活力却显著下降。 进一步研究发现,这是由于mettl3基因突变后,突变体中的m6A水平显著下降,并通过作用于促性腺激素和雌(雄)激素合成信号通路,导致突变体配子成熟受阻......阅读全文

RNA-m6A甲基化修饰研究相关研究的应用

如果新冠病毒SARS-CoV-2的大流行对我们有任何启发的话,那么要数对RNA修饰的研究了,此时研究病毒RNA以及其甲基化修饰等功能,显得比以往任何时候都更加重要。 而这是否意味着要研究病毒RNA本身不同的各种突变体或者表观遗传变化如何使这些病毒更灵活和感染力?还是研究从细胞和组织中收集的R

全套病毒RNA-m6A甲基化修饰研究工具的使用(三)

       随后, 需要检测m6A甲基化酶和脱甲基酶活性        如果您打算研究RNA甲基化酶或去甲基化酶的活性/抑制作用,我们建议您使用上述提到的功能强大的核提取试剂盒(OP-0002),该试剂盒可以快速提取核蛋白,同时可确保提取后的酶活性保持完整。        收集了核提取物后,进行甲

全套病毒RNA-m6A甲基化修饰研究工具的使用(一)

       如果新冠病毒SARS-CoV-2的大流行对我们有任何启发的话,那么要数对RNA修饰的研究了,此时研究病毒RNA以及其甲基化修饰等功能,显得比以往任何时候都更加重要。 而这是否意味着要研究病毒RNA本身不同的各种突变体或者表观遗传变化如何使这些病毒更灵活和感染力?还是研究从细胞和

全套病毒RNA-m6A甲基化修饰研究工具的使用(二)

       那么,病毒RNA修饰的研究工作流程有哪些呢?        首先,提取病毒RNA        无论您是从细胞,组织还是病毒等样品开始实验,高效而快速的RNA提取通常都是成功进行实验的第一步。工作流程的这一部分至关重要,因为足够的纯度和产量都是确保下游应用程序平稳准确运行的基本要求。 

SUMO化修饰调控m6A-RNA甲基化酶METTL3及其催化功能

  RNA甲基化是目前最炙手可热的研究领域,近3个月以来,该方向影响因子10分以上的文章数量竟接近20篇。云序生物曾对RNA甲基化研究方法及思路进行了深度剖析,感兴趣的老师可浏览云序生物前期公众号(2018国自然热点二:RNA甲基化研究深度剖析)。   近三个月高分文章部分列表:   2月28日

5篇m6A甲基化文章教你如何使用纯测序数据

文章导读2019年m6A修饰曾创下单月发表100+篇10分影响因子文章佳话。2020年1月17日何川教授团队最新Science揭示了m6A新功能---调控染色质状态和转录预示m6A等RNA修饰将仍然是目前最为热门的科研方向。m6A甲基化与mRNA关联分析案例一:非洲爪蟾睾丸组织中m6A甲基化图谱发表

5篇m6A甲基化文章教你如何使用纯测序数据得高分

2019年m6A修饰曾创下单月发表100+篇10分影响因子文章佳话。2020年1月17日何川教授团队最新Science揭示了m6A新功能---调控染色质状态和转录预示m6A等RNA修饰将仍然是目前最为热门的科研方向。 云序生物是国内最早提供m6A测序的科研平台,也是客户发表文章最多的RNA甲基化测

植物所解析RNA甲基化调控果实成熟的作用机制

  DNA甲基化(5mC)和RNA甲基化(m6A)是两种重要的核酸修饰,在基因表达调控中发挥重要作用并参与诸多生物学过程。然而,这两种核酸修饰之间是否存在内在关联性却不清楚。近日,中国科学院植物研究所秦国政研究组和田世平研究组合作,揭示了DNA甲基化可通过调节m6A去甲基化酶基因表达的方式影响番茄果

5篇m6A甲基化文章教你如何使用纯测序数据得高分

  文章导读   2019年m6A修饰曾创下单月发表100+篇10分影响因子文章佳话。2020年1月17日何川教授团队最新Science揭示了m6A新功能---调控染色质状态和转录预示m6A等RNA修饰将仍然是目前最为热门的科研方向。   云序生物是国内最早提供m6A测序的科研平台,也是客户发表

METTL3调控m6A甲基化修饰对小鼠脂肪细胞发育的重要作用

  今 天我们为大家解读一篇今年4月3日发表在Nature communication(IF=11.878)的文章,作者研究了m6A修饰对小鼠脂肪组织发育的影响。   棕色脂肪组织(BAT)通过线粒体产生并耗散热量,对机体起到保暖和控制肥胖的重要作用,而BAT的出生后发育,正是它们获得这些功能的关

METTL3调控m6A甲基化修饰对小鼠脂肪细胞发育的重要作用

  今 天我们为大家解读一篇今年4月3日发表在Nature communication(IF=11.878)的文章,作者研究了m6A修饰对小鼠脂肪组织发育的影响。   棕色脂肪组织(BAT)通过线粒体产生并耗散热量,对机体起到保暖和控制肥胖的重要作用,而BAT的出生后发育,正是它们获得这些功能的关

一文了解RNA甲基化机制

  1. 什么是RNA甲基化修饰?  我们知道DNA的甲基化修饰是发生在胞嘧啶(C)上的,而最常见的RNA的甲基化修饰是m6A(N6-methyladenosine,6-甲基腺嘌呤)和尿苷化修饰(uridylation,U-tail)。  m6A修饰在70年代就发现了,是可以发生在mRNA、lncR

云序生物最新“RNA-甲基化”研究汇总拟南芥篇

  关于RNA甲基化修饰的研究成果在Nature,Science,Cell等高分期刊上频频亮相,并一次次刷新人们对生命科学的认知。拟南芥作为植物界中研究RNA甲基化修饰的先行者,许多学者将它作为研究对象,并与最新m6A、m5C RNA甲基化测序技术结合,证实到RNA甲基化广泛存在于拟南芥各个发育期,

睾丸间质细胞(LCs)m6A修饰提供新治疗靶点在不育症...3

总结: 细胞的生长与分化依赖于基因的调控表达方式,越来越多的研究表明m6A 甲基化在更多领域发挥着关键作用,而本文作者正是利用多组学MeRIP, RIP, CoIP, CHIP(云序生物提供此服务)等多种技术联合分析,揭示了m6A修饰通过影响Camkk2转录的稳定性和Ppm1a的翻译效率调节LC

揭秘m6A修饰新功能----调控染色质状态和转录活性

  文章导读   m6A是真核生物中最常见的一类化学修饰,能够在多种生物过程中发挥重要作用,包括癌症发生发展、细胞分化、压力应答、免疫反应以及神经发育等方面。目前大部分研究主要探究m6A对蛋白编码基因的调控——即影响mRNA稳定性或翻译效率。   2020年1月17日,美国芝加哥大学何川,中科院

云序生物最新“RNA-甲基化”研究汇总拟南芥篇

  关于RNA甲基化修饰的研究成果在Nature,Science,Cell等高分期刊上频频亮相,并一次次刷新人们对生命科学的认知。拟南芥作为植物界中研究RNA甲基化修饰的先行者,许多学者将它作为研究对象,并与最新m6A、m5C RNA甲基化测序技术结合,证实到RNA甲基化广泛存在于拟南芥各个发育期,

云序生物最新m6A“RNA甲基化”研究汇总—非编码RNA篇

  RNA甲基化是目前申请国自然项目热点,也是唯一能在短短3个月内发数十篇nature,cell级别高分文章领域,近期RNA甲基化研究引起了科研工作者的研究热潮。因mRNA参与蛋白编码,之前多数文章针对mRNA甲基化进行研究(详细见云序课堂之前往期回顾)。然而许多研究表明发生m6A甲基化的非编码RN

云序生物最新m6A“RNA甲基化”研究汇总—非编码RNA篇

  RNA甲基化是目前申请国自然项目热点,也是唯一能在短短3个月内发数十篇nature,cell级别高分文章领域,近期RNA甲基化研究引起了科研工作者的研究热潮。因mRNA参与蛋白编码,之前多数文章针对mRNA甲基化进行研究(详细见云序课堂之前往期回顾)。然而许多研究表明发生m6A甲基化的非编码RN

揭秘m6A修饰新功能----调控染色质状态和转录活性

  m6A是真核生物中最常见的一类化学修饰,能够在多种生物过程中发挥重要作用,包括癌症发生发展、细胞分化、压力应答、免疫反应以及神经发育等方面。目前大部分研究主要探究m6A对蛋白编码基因的调控——即影响mRNA稳定性或翻译效率。   2020年1月17日,美国芝加哥大学何川,中科院北京基因组研究所

陈建军/杨建华/何川/黄刚-揭示RNA-m6A由组蛋白修饰决定

  近年来,RNA表观遗传学的研究发现RNA甲基化修饰,特别是m6A甲基化修饰,在哺乳动物的转录组中广泛存在,并且在多种生理和病理过程中发挥着重要的生物学功能,引领了RNA以及表观遗传学领域的又一个热潮。高通量测序揭示在人和小鼠的转录组中有1/3-1/2的mRNA转录本具有m6A修饰【1,2】。理论

睾丸间质细胞(LCs)m6A修饰提供新治疗靶点在不育症治疗

  m6A是真核生物中最常见的一类RNA修饰,目前已有的研究表明m6A在加速mRNA代谢和翻译,以及在细胞分化、胚胎发育和压力应答等过程中起重要作用。这一次,研究重大发现m6A修饰在“人类繁衍”中也发挥着重大意义,该方向的发现将会吸引着更多的科研工作者探究在m6A与“不孕不育”的密切联系。云序生物一

RNA甲基化(m6A)研究:最前沿表观遗传研究热点(一)

随着表观遗传学研究的不断深入,组蛋白修饰(甲基化,乙酰化,磷酸化…)和DNA甲基化修饰相关的高水平研究成果如雨后春笋般涌现,遍布Nature, Cell和Science等期刊杂志。在分子生物学的中心法则中,遗传信息从DNA、RNA流向蛋白。基因组DNA和组蛋白上都存在可逆的表观遗传学修饰,这

云序RNA修饰技术余义勋课题组植物m1A修饰调控机制的运用

  导读   RNA甲基化修饰在调控生物生长发育的过程中起重要作用,m6A和m5C在植物体内的产生机制和生物学功能已有较多研究论文发表,然而RNA m1A(N1-甲基腺嘌呤)修饰在植物中的研究还非常少。   近日,Plant Physiology 在线发表了华南农业大学余义勋课题组题为“The

“RNA-甲基化”研究汇总——拟南芥篇

关于RNA甲基化修饰的研究成果在Nature,Science,Cell等高分期刊上频频亮相,并一次次刷新人们对生命科学的认知。拟南芥作为植物界中研究RNA甲基化修饰的先行者,许多学者将它作为研究对象,并与最新m6A、m5C RNA甲基化测序技术结合,证实到RNA甲基化广泛存在于拟南芥各个发育

表观遗传研究热点:RNA-甲基化(m6A)研究

随着表观遗传学研究的不断深入,组蛋白修饰(甲基化,乙酰化,磷酸化…)和 DNA 甲基化修饰相关的高水平研究成果如雨后春笋般涌现,遍布 Nature, Cell 和 Science 等期刊杂志。在分子生物学的中心法则中,遗传信息从 DNA、RNA 流向蛋白。基因组 DNA 和组蛋白上都存在可逆的表观遗

表观遗传研究热点:RNA-甲基化(m6A)研究

随着表观遗传学研究的不断深入,组蛋白修饰(甲基化,乙酰化,磷酸化…)和 DNA 甲基化修饰相关的高水平研究成果如雨后春笋般涌现,遍布 Nature, Cell 和 Science 等期刊杂志。在分子生物学的中心法则中,遗传信息从 DNA、RNA 流向蛋白。基因组 DNA 和组蛋白上都存

中国学者发表RNA甲基化重要成果

  基因组DNA和组蛋白上存在可逆的表观遗传学修饰,这些修饰可以调控基因的表达,由此决定细胞的状态,影响细胞的分化和发育。近年来人们发现,mRNA和其他RNA也存在类似的表观遗传学调控,比如m6A(N6-methyladenosine)。  西北农林科技大学、中科院上海植物逆境生物学研究中心和美国普

中国学者发表RNA甲基化重要成果

  基因组DNA和组蛋白上存在可逆的表观遗传学修饰,这些修饰可以调控基因的表达,由此决定细胞的状态,影响细胞的分化和发育。近年来人们发现,mRNA和其他RNA也存在类似的表观遗传学调控,比如m6A(N6-methyladenosine)。  西北农林科技大学、中科院上海植物逆境生物学研究中心和美国普

云序超微量MeRIP测序技术在m6A甲基化文章发表的应用2

3) m6A修饰与基因表达联合分析通过m6A-MeRIP-seq和RNA-seq联合分析,文章展示了m6A修饰水平与基因表达水平间的关系,统计发现表达高的基因分组中,受m6A修饰的基因比例也更高。4)甲基化相关酶的表达通过qPCR检测了两组样品中6个甲基化相关酶的表达,发现在高度近视白内障患者中甲基

m6A-RNA甲基化在发表多篇10+文章的运用(一)

导读最近小编检索了关于m6A修饰的文章发表情况,发现目前2020年发表的关于m6A修饰的文章已经达到309篇,已经追平2019年整年度发表篇数,可以预见m6A RNA修饰下半年年发表文章会呈现出爆炸式增长。 图1. 近6年m6A RNA修饰相关文章发表情况( data from PubMed)那么您