4个新基因释放心脏再生潜能!

鱼或蝾螈等动物遭受心脏损伤后,它们的细胞可以通过分裂,成功修复受伤器官,为什么人类心脏没有这种能力? 全世界2400多万人患心力衰竭,除了心脏移植,终末期病人几乎没有其他任何治疗方案可选。让肌肉细胞像蝾螈一样分裂,可以为数百万心脏受损的人们提供一线曙光。 人类胚胎的心脏细胞可以分裂增殖,如此心脏才得以生长发育。问题是出生后心肌细胞(cardiomyocytes)就失去了分裂能力,大脑、脊髓和胰腺细胞也是如此。 “因为许多成体细胞不能分裂,一旦细胞丢失很容易导致疾病,”Gladstone研究所所长Deepak Srivastava博士解释。“如果我们能让细胞重新分裂就能再生组织。” 几十年来科学界虽然一直都在努力,但是取得的进步实在太有限了,所有尝试要不无效,要不重复性很差。 这篇《Cell》文章报道了第一种至少在动物模型中既稳定又有效的方法。 Srivastava和他的团队发现有4个基因参与控制细胞分裂周期,当研......阅读全文

细胞分裂周期基因的基本概念

中文名称细胞分裂周期基因英文名称cell division cycle gene;cdc gene定  义调控细胞分裂时相和细胞周期的某些蛋白酶和磷酸酶的编码基因。应用学科免疫学(一级学科),免疫系统(二级学科),免疫分子(三级学科)

无丝分裂的分裂周期

无丝分裂大致可划分为四个时期:第一期:核内染色质复制倍增,核及核仁体积增大,核仁组织中心分裂。第二期:以核仁及核仁组织中心为分裂制动中心,以核仁与核膜周染色质相联系的染色质丝为牵引带,分别牵引着新复制的染色质和原有的染色质。新复制的染色质在对侧核仁组织中心发出的染色质丝的牵引下,离开核膜移动到细胞的

简述细胞增殖有丝分裂的周期变化

  细胞分裂期 在细胞分裂期,最明显变化是细胞核中染色体的变化。人们为了研究方便,把分裂期分为四个时期:前期,中期,后期,末期。其实,分裂期的各个时期的变化是连续的,并没有严格的时期界限。

关于有丝分裂的细胞周期的介绍

  分裂具有周期性,即连续分裂的细胞,从一次分裂完成时开始,到下一次分裂完成时为止,从形成子细胞开始到再一次形成子细胞结束(图1)为一个细胞周期。一个细胞周期包括两个阶段:分裂间期和分裂期。  分裂间期分G1、S和G2期,分裂间期为分裂期进行活跃的物质准备,完成DNA分子的复制和有关蛋白质的合成,同

关于细胞增殖有丝分裂的周期变化的介绍

  细胞分裂期 在细胞分裂期,最明显变化是细胞核中染色体的变化。人们为了研究方便,把分裂期分为四个时期:前期,中期,后期,末期。其实,分裂期的各个时期的变化是连续的,并没有严格的时期界限。  前期  细胞分裂的前期,最明显的变化是细胞核中出现染色体。分裂间期复制的染色体,由于螺旋缠绕在一起,逐渐缩短

细胞周期的间期与分裂期阶段介绍

细胞周期(cell cycle)是指细胞从一次分裂完成开始到下一次分裂结束所经历的全过程,分为间期与分裂期两个阶段。(一) 间期间期又分为三期、即DNA合成前期(G1期)、DNA合成期(S期)与DNA合成后期(G2期)。1. G1期(first gap) 从有丝分裂到DNA复制前的一段时期,又称

无丝分裂的周期划分

无丝分裂大致可划分为四个时期:第一期:核内染色质复制倍增,核及核仁体积增大,核仁组织中心分裂。第二期:以核仁及核仁组织中心为分裂制动中心,以核仁与核膜周染色质相联系的染色质丝为牵引带,分别牵引着新复制的染色质和原有的染色质。新复制的染色质在对侧核仁组织中心发出的染色质丝的牵引下,离开核膜移动到细胞的

有丝分裂的周期变化介绍

有丝分裂的周期变化细胞分裂期 在细胞分裂期,最明显变化是细胞核中染色体的变化。人们为了研究方便,把分裂期分为四个时期:前期,中期,后期,末期。其实,分裂期的各个时期的变化是连续的,并没有严格的时期界限。前期细胞分裂的前期,最明显的变化是细胞核中出现染色体。分裂间期复制的染色体,由于螺旋缠绕在一起,逐

细胞分裂的分裂作用

原核细胞还了解不多,只对少数细菌的分裂有些具体认识。原核细胞既无核膜,也无核仁,只有由环状DNA分子构成核区,又称拟核,具有类似细胞核的功能。拟核的DNA分子或者连在质膜上,或者连在质膜内陷形成的质膜体上,质膜体又称间体。随着DNA的复制间体也复制成两个。以后,两个间体由于其间的质膜的生长而逐渐离开

细胞分裂的分裂种类

原核细胞还了解不多,只对少数细菌的分裂有些具体认识。原核细胞既无核膜,也无核仁,只有由环状DNA分子构成核区,又称拟核,具有类似细胞核的功能。拟核的DNA分子或者连在质膜上,或者连在质膜内陷形成的质膜体上,质膜体又称间体。随着DNA的复制间体也复制成两个。以后,两个间体由于其间的质膜的生长而逐渐离开

细胞分裂的分裂种类

原核细胞还了解不多,只对少数细菌的分裂有些具体认识。原核细胞既无核膜,也无核仁,只有由环状DNA分子构成核区,又称拟核,具有类似细胞核的功能。拟核的DNA分子或者连在质膜上,或者连在质膜内陷形成的质膜体上,质膜体又称间体。随着DNA的复制间体也复制成两个。以后,两个间体由于其间的质膜的生长而逐渐离开

细胞周期信号通路XPC基因的临床解释

该基因编码的蛋白是xpc复合物的关键组成部分,在全球基因组核苷酸切除修复(ner)的早期步骤中起着重要作用。编码的蛋白质对于损伤感知和dna结合很重要,并且显示出对单链dna的偏好。该基因或其他一些内质网成分的突变可导致色素性干皮病,一种罕见的常染色体隐性遗传疾病,其特征是随着癌症的早期发展,对阳光

细胞周期信号通路BLM基因的临床解释

bloom综合征基因产物与含有dna解旋酶的desh盒recq亚群有关,具有dna刺激的atp酶和atp依赖的dna解旋酶活性。引起布鲁姆综合征的突变会删除或改变螺旋酶基序,并可能使3'-5'螺旋酶活性丧失。正常蛋白可能起到抑制不适当重组的作用。

细胞周期信号通路TYMS基因的临床解释

胸苷酸合成酶利用5,10-亚甲基四氢叶酸(亚甲基四氢叶酸)作为辅因子催化脱氧尿苷酸甲基化为脱氧胸苷酸。此功能维持DNA复制和修复的关键DTMP(胸腺嘧啶-5-一磷酸素)池。这种酶作为肿瘤化疗药物的靶点一直备受关注。它被认为是5-氟尿嘧啶、5-氟尿嘧啶-2-原脱氧尿苷和一些叶酸类似物的主要作用部位。该

细胞周期信号通路MAX基因的临床解释

该基因编码的蛋白质是碱性螺旋环螺旋亮氨酸拉链(bhlhz)转录因子家族的成员。它能与其他家族成员形成同二聚体和异二聚体,包括mad、mxi1和myc。myc是一种参与细胞增殖、分化和凋亡的肿瘤蛋白。同二聚体和异二聚体竞争一个共同的dna靶位点(e盒),这些二聚体形式之间的重排提供了一个复杂的转录调控

细胞周期信号通路POLE基因的临床解释

该基因编码DNA聚合酶epsilon的催化亚单位。这种酶参与DNA修复和染色体DNA复制。该基因突变与结直肠癌12和面部畸形、免疫缺陷、利维多和身材矮小有关。

细胞周期信号通路NBN基因的临床解释

该基因突变与nijmegen破碎综合征(一种以小头畸形、生长迟缓、免疫缺陷和癌症易感性为特征的常染色体隐性染色体不稳定综合征)有关。编码蛋白是由5种蛋白质组成的MRE11/RAD50双链断裂修复复合物的成员。这种基因产物被认为与DNA双链断裂修复和DNA损伤诱导的检查点激活有关。

细胞周期信号通路CREBBP基因的临床解释

该基因广泛表达,参与多种不同转录因子的转录共激活。首先作为一种结合cAMP反应元件结合蛋白(creb)的核蛋白被分离出来,该基因通过将染色质重塑与转录因子识别结合,在胚胎发育、生长控制和体内平衡中发挥关键作用。该基因编码的蛋白质具有固有的组蛋白乙酰转移酶活性,也作为支架稳定与转录复合物的额外蛋白质相

细胞周期信号通路PRKDC基因的临床解释

该基因编码dna依赖性蛋白激酶(dna-pk)的催化亚单位。与ku70/ku80异二聚体蛋白共同参与dna双链断裂修复和重组。编码的蛋白质是PI3/PI4激酶家族的成员。

细胞周期信号通路TOP基因的临床解释

这个基因编码一种DNA拓扑异构酶,这种酶在转录过程中控制和改变DNA的拓扑状态。这种酶催化单链DNA的瞬间断裂和重新结合,使单链DNA彼此穿过,从而改变DNA的拓扑结构。该基因定位于20号染色体,并具有位于1号和22号染色体上的假基因。

细胞周期信号通路TERT基因的临床解释

端粒酶是一种核糖核蛋白聚合酶,通过添加端粒重复序列TTagg来维持端粒末端。这种酶由一种具有逆转录酶活性的蛋白质成分(由该基因编码)和一种作为端粒重复模板的RNA成分组成。端粒酶的表达在细胞衰老中起作用,因为它通常在出生后的体细胞中被抑制,导致端粒逐渐缩短。体细胞端粒酶表达的放松调控可能与肿瘤发生有

细胞周期信号通路ATR基因的临床解释

该基因编码的蛋白属于PI3/PI4激酶家族,与ATM(一种在共济失调性毛细血管扩张症中突变的基因编码的蛋白激酶)关系最为密切。这种蛋白和atm与pombe-rad3裂殖酵母菌(schizosaccharomyces pombe rad3)具有相似性,后者是细胞周期停滞和DNA损伤修复反应中所需的细胞

细胞周期信号通路ATM基因的临床解释

ATM基因编码的蛋白属于PI3/PI4激酶家族,这种蛋白是一种重要的细胞周期检查点激酶,通过磷酸化调控下游一系列重要蛋白,包括抑癌蛋白p53和BRCA1、检查点激酶CHK2、检查点蛋白RAD17和RAD9以及DNA修复蛋白NBS1。ATM和与其密切相关的蛋白ATR被认为是在细胞周期调控以及DNA损伤

细胞周期信号通路REL-基因的临床解释

该基因编码一种属于rel同源域/免疫球蛋白样折叠、丛蛋白、转录因子(rhd/ipt)家族的蛋白质。这个家族的成员调节参与细胞凋亡、炎症、免疫反应和致癌过程的基因。这种原癌基因在B淋巴细胞的存活和增殖中起作用。这种基因的突变或扩增与B细胞淋巴瘤,包括霍奇金淋巴瘤有关。该基因的单核苷酸多态性与溃疡性结肠

细胞周期信号通路GSTS基因的临床解释

谷胱甘肽S-转移酶(GSTS)是一个酶家族,通过催化许多疏水性和亲电性化合物与还原性谷胱甘肽的结合,在解毒过程中发挥重要作用。根据其生化、免疫和结构特性,可溶性GST可分为4大类:α、μ、π和θ。GST家族成员是一个多态基因,编码活性的、功能不同的GSTP1变异蛋白,被认为在异种代谢中起作用,并在癌

细胞周期信号通路MYC基因的临床解释

该基因编码的蛋白质是一种多功能的核磷蛋白,在细胞周期进展、凋亡和细胞转化中起到作用。作为调节特定靶基因转录的转录因子发挥作用。这种基因的突变、过度表达、重排和易位与多种造血肿瘤、白血病和淋巴瘤,包括伯基特淋巴瘤有关。有证据表明,来自上游、非aug(cug)帧和下游aug起始位点的选择性翻译起始导致两

细胞周期信号通路AURKA基因的临床解释

该基因编码的蛋白是一种细胞周期调节激酶,在染色体分离过程中似乎与纺锤体极的微管形成和/或稳定有关。编码蛋白存在于有丝分裂的间期细胞的中心体和纺锤体两极。该基因可能在肿瘤的发展和进展中起作用。在1号染色体上发现一个经过加工的假基因,在10号染色体上发现一个未经加工的假基因。已发现该基因的多个编码相同蛋

细胞周期信号通路ESR基因的临床解释

雌激素受体α(ERα),也称为NR3A1(核受体亚家族3,A组,成员1),是雌激素受体的两种主要类型之一,雌激素受体是由性激素雌激素激活的核受体。 在人类中,ERα由基因ESR1(雌激素受体1)编码。

细胞周期信号通路AURKB基因的临床解释

这个基因编码丝氨酸/苏氨酸激酶的极光激酶亚家族的一个成员。编码这个亚科另外两个成员的基因位于19号和20号染色体上。这些激酶通过与微管的结合参与有丝分裂和减数分裂过程中染色体排列和分离的调节。这个基因的一个假基因位于8号染色体上。另外,已经发现该基因的剪接转录变体。

《Science》文章倾覆“细胞分裂”基因表达理论

  在细胞分裂之前,染色体闲散地分布在细胞核内。细胞分裂期间,染色体则开始缩短变粗,通过压缩,此时的染色体比之前致密数千倍。因此,人们长期以来一直认为分裂期基因是“沉默的”,不会被转录成蛋白质或调控分子。但是,这就留下一个问题:细胞分裂结束后,基因们又是如何被重新激活的?  “我们解答这个问题的目标