Antpedia LOGO WIKI资讯

BBC研究:拉曼市场将于2021年达18亿美元年均增长近10%

市场研究公司BCC Research的分析师预测,在未来几年内,拉曼光谱市场将呈现强劲增长态势,这主要归功于最近的拉曼技术进步和不断扩大的应用基础,特别是拉曼技术在生命科学领域的应用。 基于来自激光器的入射光的非弹性散射,过去,拉曼技术一直具有以下缺点:拉曼频移信号非常微弱,并且容易被更强的激光诱导现象(如荧光)所淹没。 但是拉曼技术的巨大优势,是其基于分子的“指纹”信号模式来识别分子的能力,其涉及独特的振动模式和旋转模式——并且随着超灵敏探测器和复杂的时间选通电子器件的出现,信号微弱已经变得不再是问题。 CAGR高达10% BCC Research公司的分析师Sinha Guarav预测,到2021年,所有拉曼光谱设备的市场规模将从2016年的11亿美元,增加到2021年的18亿美元,年均增长率接近10%。 Guarav认为,生命科学、半导体、碳材料和材料科学将是拉曼技术的主要应用领域。其中,生命科学是规模最大的......阅读全文

拉曼光谱复合增长率超7%,三大领域强势增长

  日前,Technavio发布最新全球拉曼光谱的市场研究报告,2017到2021年之间,全球拉曼光谱市场的复合年增长率超过7%。该市场研究报告还展现了2017-2021年全球拉曼光谱市场的现状和增长前景,指出,制药、环境和生命科学为拉曼光谱主要的三大应用领域,其中生命科学领域占2016年市场份额的

紫外拉曼与共振拉曼原理

荧光干扰问题和灵敏度较低严重阻碍了常规拉曼光谱的广泛应用。但近年来发展起来的紫外拉曼光谱技术有效地解决了上述问题。紫外拉曼光谱技术的出现和发展大大地扩展了拉曼光谱的应用范围。右图是紫外拉曼光谱避开荧光干扰的原理图。荧光往往出现在300nm-700nm区域,或者更长波长区域。而在紫外区

紫外拉曼与共振拉曼原理

  荧光干扰问题和灵敏度较低严重阻碍了常规拉曼光谱的广泛应用。但近年来发展起来的紫外拉曼光谱技术有效地解决了上述问题。紫外拉曼光谱技术的出现和发展大大地扩展了拉曼光谱的应用范围。右图是紫外拉曼光谱避开荧光干扰的原理图。荧光往往出现在300nm-700nm区域,或者更长波长区域。而在紫外区的某个波

紫外拉曼与共振拉曼原理

荧光干扰问题和灵敏度较低严重阻碍了常规拉曼光谱的广泛应用。但近年来发展起来的紫外拉曼光谱技术有效地解决了上述问题。紫外拉曼光谱技术的出现和发展大大地扩展了拉曼光谱的应用范围。右图是紫外拉曼光谱避开荧光干扰的原理图。荧光往往出现在300nm-700nm区域,或者更长波长区域。而在紫外区的某个波  紫外

关于拉曼光谱的拉曼效应介绍

  光照射到物质上发生弹性散射和非弹性散射. 弹性散射的散射光是与激发光波长相同的成分.非弹性散射的散射光有比激发光波长长的和短的成分, 统称为拉曼效应。  当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直

拉曼测试

 简要介绍:先进材料表征方法利用电子、光子、离子、原子、强电场、热能等与固体表面的相互作用,测量从表面散射或发射的电子、光子、离子、原子、分子的能谱、光谱、质谱、空间分布或衍射图像,得到表面成分、表面结构、表面电子态及表面物理化学过程等信息的各种技术,统称为先进材料表征方法。先进材料表征方法包括表面

拉曼散射

1921 年,印度物理学家拉曼(C. V. Raman)从英国搭船回国,在途中他思考着为什么海洋会是蓝色的问题,而开始了这方面的研究,促成他于 1928 年 2 月发现了新的散射效应,就是现在所知的拉曼效应,在物理和化学方面都很重要。 1888 年 11 月,拉曼(他的全名是 Chandrasek

拉曼光谱

一、拉曼光谱的基本原理用单色光照射透明样品时,光的绝大部分沿着入射光的方向透过,一部分被吸收,还有一部分被散射。用光谱仪测定散射光的光谱,发现有两种不同的散射现象,一种叫瑞利散射,另一种叫拉曼散射。1.瑞利散射散射是光子与物质分子相互碰撞的结果。如果光子与样品分子发生弹性碰撞,即光子与分子之间没有能

拉曼分析

当一束激发光的光子与作为散射中心的分子发生相互作用时,大部分光子仅是改变了方向,发生散射,而光的频率仍与激发光源一致,这中散射称为瑞利散射。但也存在很微量的光子不仅改变了光的传播方向,而且也改变了光波的频率,这种散射称为拉曼散射。其散射光的强度约占总散射光强度的10-6~10-10。拉曼散射的产生原

拉曼光谱

一、拉曼光谱的基本原理用单色光照射透明样品时,光的绝大部分沿着入射光的方向透过,一部分被吸收,还有一部分被散射。用光谱仪测定散射光的光谱,发现有两种不同的散射现象,一种叫瑞利散射,另一种叫拉曼散射。1.瑞利散射散射是光子与物质分子相互碰撞的结果。如果光子与样品分子发生弹性碰撞,即光子与分子之间没有能