研究发现充电可使材料获得抗菌性能

材料和电之间存在密切的关联。如基于摩擦起电的现象,通过选择合适的材料和电路设计,可成功制备将机械能转化为电能的摩擦纳米发电机。而将电场作用于材料时,也可对材料的多方面性质产生影响,如改变材料的电荷数量和电荷分布。与此相比,不那么为人所知的是,生物细胞也在时刻进行着密集、精细、活跃的电活动。细胞维持新陈代谢所必需的能量的产生,就是通过电子在呼吸链上的一系列蛋白之间的传递所实现的。真核生物细胞的呼吸链相关蛋白位于线粒体内,而微生物如细菌的呼吸链相关蛋白位于细胞膜上。因此,微生物对于外界的电扰动更为敏感。 很多植入材料可通过其表面的物理修饰或化学改性,获得一定的抗菌性能,从而更适应植入的需求。这些修饰的作用机理都可落到“电”上。如在钛基材料的表面通过离子注入的方式引入银、锌等纳米颗粒,可由于在银、锌纳米颗粒的周围与钛基底发生微观的电化学反应而使得钛基底获得抗菌性能。又如通过化学修饰,在材料表面修饰上带正电荷的高分子,使得材料表面......阅读全文

硅纳米管:自组生长新纳米材料

  湖南大学博士生导师唐元洪教授课题组率先合成自组生长的硅纳米管,标志着我国在纳米材料研究方面取得重大突破。   自组生长的硅纳米管是在一定条件下由一个个原子自己搭建生成、内部排列有序的纳米管,它完全可以体现硅纳米管的真实特性,同时具备碳纳米材料和硅纳米线材料的性能,在传感器、晶体管、光电器件等方

不同材料纳米管具有不同摩擦特性

  麻省理工学院(MIT)日前宣称,正在该校做访问研究的法国里昂大学研究人员发现,由不同材料做成的纳米管,具有意想不到的性能差异,有的表现为光滑,有的则非常粘滞。   纳米管的形状是一个像吸管一样的微型圆筒,直径只有头发丝的千分之一,可用于太阳能电池、化学传感器及强化复合材料等。目前纳米管的重点研究

简述二氧化钛的性能

  金红石型在高能(较短波长)吸收辐射能较锐钛型大,换句话说,对于金红石型钛白粉,在具有很强杀伤力的UV-波长段内(350-400nm),它对紫外线的反射率要远远低于锐钛型钛白粉,在这种情况下,它对周围的成膜物、树脂等身上所要分担的紫外光线就要少得多,那么这些有机物的使用寿命就长,这就是金红石型钛白

Maxwell如何对磁滞材料进行建模(二)

3.激活磁滞模型解决方案二1.按常规方法输入材料的平均磁化曲线,并设置X,Y,Z为02.Core Loss Model> Hysteresis Model3.自动打开B-H曲线,输入Hci参数至此两种磁滞材料建模方法介绍完毕。

新一代光敏二氧化钛复合材料应对大气污染

  氮氧化物是现代城市大气污染物的最主要来源,光敏二氧化钛(TiO2)复合材料自上世纪90年代中期问世以来,以其能将大气氮氧化物催化氧化成无毒无害硝酸盐的独特功能,在欧盟范围内得到快速的商业化应用。混合约4%比例光敏复合材料的混凝土涂层技术,不仅具备自清洁功能,还可有效吸附大气中高达80%以上的氮氧

新一代光敏二氧化钛复合材料应对大气污染

   氮氧化物是现代城市大气污染物的最主要来源,光敏二氧化钛(TiO2)复合材料自上世纪90年代中期问世以来,以其能将大气氮氧化物催化氧化成无毒无害硝酸盐的独特功能,在欧盟范围内得到快速的商业化应用。混合约4%比例光敏复合材料的混凝土涂层技术,不仅具备自清洁功能,还可有效吸附大气中高达80%以上的氮

新一代光敏二氧化钛复合材料应对大气污染

  氮氧化物是现代城市大气污染物的最主要来源,光敏二氧化钛(TiO2)复合材料自上世纪90年代中期问世以来,以其能将大气氮氧化物催化氧化成无毒无害硝酸盐的独特功能,在欧盟范围内得到快速的商业化应用。混合约4%比例光敏复合材料的混凝土涂层技术,不仅具备自清洁功能,还可有效吸附大气中高达80%以上的氮氧

美制成碳纳米管增强型风电叶片

  据美国物理学家组织网8月31日(北京时间)报道,美国科学家日前首次制造出碳纳米管增强聚氨酯风电叶片。与传统材料相比,该材料重量轻、强度大、耐久性好,有望成为制造下一代风力发电机叶片的理想材料。   为了实现进一步扩大风力发电规模,更有效地利用风电资源,不少工程师和科学家都在致力于

铁电材料电滞回线的测量

   测量铁电材料电滞回线的方法通常有两种:冲击检流计描点法和 Sawyer-Tower电路法。第二种方法可用超低频示波器进行观察以及用xy函数记录仪进行记录,简便迅速,故人们常常采用。    采用Sawyer-Tower电路准静态测试铁电陶瓷材料电滞回线的测量原理图(GB/T6426-1999)

铁电材料电滞回线的测量

  测量铁电材料电滞回线的方法通常有两种:冲击检流计描点法和 Sawyer-Tower电路法。第二种方法可用超低频示波器进行观察以及用xy函数记录仪进行记录,简便迅速,故人们常常采用。    采用Sawyer-Tower电路准静态测试铁电陶瓷材料电滞回线的测量原理图(GB/T6426-1999)如

基于钙钛矿的廉价柔性纤维太阳能电池

基于钙钛矿的廉价柔性纤维太阳能电池  对植入衣服的小型电子设备来说,纺织物太阳能电池是理想的电源。在应用化学杂志上,中国科学家介绍了纤维形式的新型太阳能电池,它们可被编织到纺织物中。这种柔韧同轴的电池基于钙钛矿材料和碳纳米管;因为具有高达3.3 %的能量转化效率和低制造成本,让它们脱颖而出

中国学者揭示纳米二氧化钛材料可致潜在环境污染

  2013年8月4日,从中科大采访获悉,该校学者通过研究发现纳米二氧化钛可转化为硝酸盐,可能导致潜在的环境污染问题。   纳米二氧化钛由于其高折射率、超强的紫外光吸收能力、优异的杀菌、除臭及防污性能,在全世界范围内的多个领域广泛使用,如用于防晒护肤品、食品、白色油漆等消费品及家居生产,其年生产量

简述纳米二氧化钛的分类

  一.按照晶型可分为:金红石型纳米钛白粉和锐钛型纳米钛白粉。  二.按照其表面特性可分为:亲水性纳米钛白粉和亲油性纳米钛白粉。  三.按照外观来分:有粉体和液体之分,粉体一般都是白色,液体有白色和半透明状。

关于二氧化钛的分级介绍

  Ⅰ类:二氧化钛干磨和未处理,Ⅰ类二氧化钛具有低表面积和低吸油值。  Ⅱ类:为Ⅰ类二氧化钛经过处理,并进行湿法研磨,去除大颗粒,并用4%量的硅-铝包覆,它具有最低表面积和最低吸油值。  Ⅲ类:为典型的超细包覆级,并有有机包覆。  Ⅳ类:大包覆量,又可分为Ⅳa和Ⅳb,其包覆量在5~10%之间。Ⅳb主

概述二氧化钛的工业应用

  二氧化钛是一种重要的白色颜料和瓷器釉料。用于油漆、油墨、塑料、橡胶、造纸、化纤、水彩颜料等行业。  二氧化钛是世界上最白的东西,1克二氧化钛可以把450多平方厘米的面积涂得雪白。它比常用的白颜料——锌钡白还要白5倍,因此是调制白油漆的最好颜料。世界上用作颜料的二氧化钛,一年多到几十万吨。二氧化钛

M13病毒可将太阳能电池效率提高三成

  美国麻省理工学院4月26日在其网站上宣称,该校研究人员日前开发出了一种新技术,可通过一种名为“M13”的病毒将太阳能电池的光电转换效率提高近三成。相关论文发表在最新一期《自然·纳米技术》杂志上。   先前的研究已经发现,碳纳米管可以提高太阳能电池的转换效率。理想的情况下,碳纳米管

铁电材料中电卡效应的制冷原理

  制冷是人们日常生活中必不可少的事情,从水果、蔬菜、肉类保鲜,到空调的使用,再到医用方面的器官冷藏、核磁共振成像等,都需要制冷。普通的压缩机制冷的方法已经差不多到了其极限,并且其排出的有机气体,直接破坏嗅氧层,引起了温室效应,对环境的破坏作用已越来越受到人们的重视。寻找新的制冷方式成为一项刻不容缓

上海在黑色二氧化钛制备与太阳能利用方面取得进展

  二氧化钛,作为重要的新能源和环境保护材料,在光催化、太阳能发电、太阳能集热等方面被广泛应用。然而,二氧化钛的太阳能利用面临巨大的挑战,主要原因在于光吸收范围窄、电子-空穴对的分离效率低。二氧化钛只能吸收太阳光谱中~5%的紫外光,而无法利用可见光和近红外光的能量;本征电导率只有~10-10 S/c

新加坡研发新型电池-两分钟可充电70%寿命长达20年

  新加坡南洋理工大学的研究人员13日表示,经过三年的实验,他们成功研制出一种超快的充电电池,能够在两分钟内充电百分之七十,并且使用寿命可达20年。  目前,充电锂电池广泛应用于手机、平板电脑以及电动车等领域。南洋理工大学当天向媒体声明说:“该技术的突破将为所有产业带来广泛的影响,尤其是受制于电池使

黑色二氧化钛制备与太阳能利用研究获系列进展

  二氧化钛作为重要的新能源和环境保护材料,在光催化、太阳能发电、太阳能集热等方面被广泛应用。然而,二氧化钛的太阳能利用面临巨大的挑战,主要原因在于光吸收范围窄、电子-空穴对的分离效率低。二氧化钛只能吸收太阳光谱中~5%的紫外光,而无法利用可见光和近红外光的能量;本征电导率只有~10-10 S/cm

蝴蝶翅膀+碳纳米管=新型生物复合材料

  最近,日本科学家通过大闪蝶翅膀和碳纳米管研发出了一种新型纳米生物复合材料。   通过这种具有神奇天然属性的南美洲大闪蝶翅膀,科学家们研发出了一种纳米生物复合材料,并有望在未来应用于可穿戴电子设备、高灵敏度光传感器以及可循环使用的电池产品中。科学家将这一科技成果发表在《ACS纳米技术》期刊中。

新型碳纳米管基散热材料研发成功

  中科院苏州纳米所研究员李清文课题组将高导电、高导热的铜纳米线引入碳纳米管纸,制备出具有高热导率和电导率的新型碳纳米管基散热材料。相关成果发表于《碳》杂志。   据了解,碳纳米管具有极高的轴向热导率,因而在大功率电子器件散热材料中被寄予厚望。然而,其小尺寸特性,还有碳纳米管之间及其与复合材料基体

关于纳米二氧化钛的基本介绍

  纳米二氧化钛是白色疏松粉末,屏蔽紫外线作用强,有良好的分散性和耐候性。可用于化妆品、功能纤维、塑料、涂料、油漆等领域,作为紫外线屏蔽剂,防止紫外线的侵害。也可用于高档汽车面漆,具有随角异色效应。  纳米级二氧化钛,亦称钛白粉。直径在100纳米以下,产品外观为白色疏松粉末。具有抗线、抗菌、自洁净、

简述二氧化钛净化空气的作用

  二氧化钛,作为光涂料颜料的催化剂,不仅是一种环境安全的清洁剂,而且可以起到节省能量还有保护环境资源的作用。  早期日本和英国的科学家将二氧化钛涂覆在城市马路的铺路石表面,用以清洗路面空气。二氧化钛可以与沥青混合,减少空气中的污染物。当汽车经过时,含二氧化钛的混凝土或沥青可以净化空气,消除车辆排放

概述二氧化钛的表面性质

  1、表面超亲水性  研究认为在光照条件下,TiO2表面的超亲水性起因于其表面结构的变化。在紫外光照射下,TiO2价带电子被激发到导带,电子和空穴向TiO2表面迁移,在表面生成电子空穴对,电子与Ti反应,空穴则与表面桥氧离子反应,分别形成正三价的钛离子和氧空位。此时,空气中的水解离吸附在氧空位中,

简述纳米二氧化钛的抗菌原理

  纳米二氧化钛在光催化作用下使细菌分解而达到抗菌效果的。由于纳米二氧化钛的电子结构特点为一个满 TiO2的价带和一个空的导带 ,在水和空气的体系中 , 纳米二氧化钛在阳光尤其是在紫外线的照射下 ,当电子能量达到或超过其带隙能时 ,电子就可从价带激发到导带 ,同时在价带产生相应的空穴 ,即生成电子、

关于二氧化钛的制备方法介绍

  1、气相氧化法  用干燥的氧气在923K-1023K进行气相氧化:  TiCl4+O2=TiO2+2Cl2  2、硫酸法  首先用磨细的钛铁矿和硫酸(浓度≥80%,温度343K-353K)在不断通入空气并且搅拌的条件下反应,制得可溶性硫酸盐:  FeTiO3+H2SO4=TiOSO4+FeSO4

揭示纳米二氧化钛与五价砷联合暴露对海洋微藻毒性机理

  二氧化钛纳米颗粒(Titanium dioxide nanoparticles, nano-TiO2)因其独特的理化性质吸引着人们的关注,并被广泛应用于各个领域,快速的发展及其潜在的生态风险使其成为备受关注的新兴污染物。此外,二氧化钛纳米颗粒尺寸小,比表面积大,能通过静电引力和化学键作用吸附环境

研究纳米二氧化钛与五价砷联合暴露对海洋微藻毒性机理

  二氧化钛性质稳定,大量用作油漆中的白色颜料,它具有良好的遮盖能力,和铅白相似,但不像铅白会变黑;它又具有锌白一样的持久性。二氧化钛还用作搪瓷的消光剂,可以产生一种很光亮的、硬而耐酸的搪瓷釉罩面。  二氧化钛纳米颗粒(Titanium dioxide nanoparticles, nano-TiO

可见光响应黑色二氧化钛材料的可控制备及性能研究获进展

  光催化因在环境和能源方面的应用而广受人们的关注,但制约其实际应用的一个瓶颈因素是光子利用率,如常用的光催化剂二氧化钛(TiO2)只能吸收紫外光,约占太阳光全谱能量中的5%。黑色TiO2是一种新型的可见光催化材料,通过在二氧化钛纳米颗粒表面或者体相进行Ti3+掺杂或制造氧空位,从而实现其