超材料制成高定向太赫兹激光器

美国哈佛大学和英国利兹大学的一个联合研究小组最近演示了一种新型太赫兹半导体激光器,其发射的太赫兹光波准直性能与传统太赫兹光源相比显著改善。该激光器的研发成功,为太赫兹科技的应用打开了更广阔的领域。哈佛已经为此提交了一系列ZL申请。这一进展发布在8月8日的《自然·材料》杂志上。 新型太赫兹激光器突破了传统材料的限制,研究人员刻了一组亚波长光栅,直接加倍了超材料晶面的光流量,设备以3太赫兹(百亿赫兹)的频率发射光线(波长为100微米,在可见光谱中属于远红外线),大大降低了这些半导体激光器的散射角度,同时保持了光能的高输出功率。 这种超材料被直接嵌入光学设备的高吸收性砷化镓晶面上,在演示中能看到,人造光显示出深浅不同的微米光栅,各具不同的功能。浅蓝色的狭缝能将输出的激光功率加倍,导向并限定在晶体表面。 太赫兹射......阅读全文

超材料制成高定向太赫兹激光器

美国哈佛大学和英国利兹大学的一个联合研究小组最近演示了一种新型太赫兹半导体激光器,其发射的太赫兹光波准直性能与传统太赫兹光源相比显著改善。该激光器的研发成功,为太赫兹科技的应用打开了更广阔的领域。哈佛已经为此提交了一系列专利申请。这一进展发布在8月8日的《自然·材料》杂志上。      新型太赫

超材料制成高定向太赫兹激光器

  美国哈佛大学和英国利兹大学的一个联合研究小组最近演示了一种新型太赫兹半导体激光器,其发射的太赫兹光波准直性能与传统太赫兹光源相比显著改善。该激光器的研发成功,为太赫兹科技的应用打开了更广阔的领域。哈佛已经为此提交了一系列专利申请。这一进展发布在8月8日的《自然·材料》杂志上。

超材料制成高定向太赫兹激光器

美国哈佛大学和英国利兹大学的一个联合研究小组最近演示了一种新型www.caigou.com.cn/c203513太赫兹半导体激光器,其发射的太赫兹光波准直性能与传统太赫兹光源相比显著改善。该激光器的研发成功,为太赫兹科技的应用打开了更广阔的领域。哈佛已经为此提交了一系列专利申请。这一进展发布在8月8

太赫兹信息超材料与超表面-(一)

刘峻峰, 刘硕, 傅晓建, 崔铁军    摘要:该文对信息超材料,包括数字超材料、编码超材料、以及可编程超材料的研究进展及其在太赫兹领域的应用进行了综述,从原理分析、数值仿真、样品制备、实际应用等多个角度介绍了信息超材料对电磁波全面而灵活的调控能力,着重探讨了编码超材料在太赫兹领域的发展以及应用,最

太赫兹信息超材料与超表面-(二)

4 太赫兹数字编码超材料随着编码超材料的发展,在太赫兹领域,各向异性编码超表面[12]、张量编码超表面[13]、频率编码超表面[14]以及编码超表面的数字卷积运算[15]等理论被提出,并由此得到了低雷达散射截面、波束空间搬移、异常折射、贝塞尔波束等现象。下面将以基于编码超材料的低雷达散射截面(RCS

太赫兹团队提出太赫兹双层超材料中相干完美吸收机制

  近日,微太中心太赫兹物理团队及其合作者在《应用物理快报》(Applied Physics Letters)上发表题为《超薄双层超材料在反对称模式激发下的选择性相干完美吸收(”Selective coherentperfect absorption of subradiant mode in ul

中科院研制成功太赫兹量子级联激光器

 太赫兹(THz)辐射源是THz技术应用的关键器件,基于半导体的THz辐射源有体积小、易集成等优点。中国科学院上海微系统与信息技术研究所信息功能材料国家重点实验室曹俊诚研究员等与加拿大国家研究院微结构研究所合作,采用半导体共振光学声子设计和双面金属波导结构研制成功了激射频率为2.9 THz的量子

西安光机所太赫兹超材料功能器件研究获进展

            导读: 陈徐研究了一种利用石墨烯构建的三维太赫兹超材料结构,通过与太赫兹波的相互作用,可以实现多个等离子体共振模式激发。                       3月19日,中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室研究员范文慧课题组,在太赫

超材料为太赫兹技术发展打开大门

太赫兹电磁波在非侵入性的成像与传感技术、信息技术、通信技术以及存储技术领域有着广阔的应用前景,虽然人们已经认识到太赫兹电磁波的重要性,但由于自然界材料的限制,制备高效的太赫兹发射源非常困难。  通过宽带太赫兹源,可以为研究基础物理学提供更多激动人心的方法,并可用于非侵入性材料成像与感知技术,以及太赫

太赫兹双层超材料中的相干完美吸收机制

近日,微太中心太赫兹物理团队及其合作者在《应用物理快报》(Applied Physics Letters)上发表题为《超薄双层超材料在反对称模式激发下的选择性相干完美吸收(”Selective coherentperfect absorption of subradiant mode in

太赫兹量子级联激光器实现激射

中科院上海技术物理研究所科研人员采用分子束外延技术和半导体微纳加工平台,自主完成了太赫兹量子级联激光器的结构设计、材料生长和器件制备,成功实现太赫兹量子级联激光器激射。这标志着我国科学家依靠自主创新在太赫兹量子级联激光器领域进入世界前列。     太赫兹量子级联激光器(THz-QCL)是太赫

太赫兹量子级联激光器实现激射

  中科院上海技术物理研究所科研人员采用分子束外延技术和半导体微纳加工平台,自主完成了太赫兹量子级联激光器的结构设计、材料生长和器件制备,成功实现太赫兹量子级联激光器激射。这标志着我国科学家依靠自主创新在太赫兹量子级联激光器领域进入世界前列。  太赫兹量子级联激光器(THz-QCL)是太赫兹频段最具

新型太赫兹半导体激光器问世

  据加州大学洛杉矶分校官网报道,该校科研人员利用新方法制造出太赫兹频率下工作的半导体激光器。这一突破或将带来可用于太空探索、军事和执法等领域的新型强大激光器。   在电磁波谱中,太赫兹的频率范围位于微波和红外线之间。太赫兹波可以在不损伤被检测物质的前提下对塑料、服装、半导体和艺术品等进行材料分析,

太赫兹超表面的色散特性控制

AbstractTerahertz  (THz) metasurfaces have been explored recently due to their properties  such as low material loss and ease of fabrication compared

太赫兹波与太赫兹技术

太赫兹波是指频率介于0.1~10THz之间的电磁波,其波长范围为 0.03~3 mm。太赫兹波在电磁波谱中的位置位于微波和红外辐射之间,故对其研究手段由电子学理论逐渐过渡为光子学理论。20世纪90年代以前,人们对太赫兹波的认识非常有限。近年来,随着激光技术、量子阱技术和半导体技术的发展,为太赫兹脉冲

几点带你了解太赫兹波超材料近场调控研究新进展

吸波材料是能有效吸收入射电磁波、降低目标回波强度的一类功能材料。传统的吸波材料大多是基于Salisbury吸收屏原理设计,其典型不足是体积过大。随着通信、隐身等领域对吸波材料性能要求越来越高,传统吸波材料已不能满足民用、尤其是军事应用需求。因此,研制更薄、更轻、频带更宽的新型吸波材

太赫兹

太赫兹(Tera Hertz,THz)是波动频率单位之一,又称为太赫,或太拉赫兹。等于1,000,000,000,000Hz,通常用于表示电磁波频率。太赫兹是一种新的、有很多独特优点的辐射源;太赫兹技术是一个非常重要的交叉前沿领域,给技术创新、国民经济发展和国家安全提供了一个非常诱人的机遇。历史早期

太赫兹激光器有望实现大规模商业应用

就像那些劣质电影中和星际小说中的英雄选择武器时首先想到那样,都是激光武器,这种装置通过刺激原子或者分子激发出光子而产生相干电磁辐射束,但是这种技术改进的速度已经有点落伍了。 如今,激光已经在工业上有了很频繁的应用,而且在家庭办公室里的文件文件打印方面以及在家庭影院播放电影等应用上都有所涉及。不仅

太赫兹激光器有望实现大规模商业应用

            就像那些劣质电影中和星际小说中的英雄选择武器时首先想到那样,都是激光武器,这种装置通过刺激原子或者分子激发出光子而产生相干电磁辐射束,但是这种技术改进的速度已经有点落伍了。 如今,激光已经在工业上有了很频繁的应用,而且在家庭办公室里的文件文件打印方面以及在家庭影院播放

太赫兹量子级联激光器功率达到1瓦特

  据物理学家组织网10月31日(北京时间)报道,奥地利维也纳技术大学的一组研究人员制造出一种新型量子级联激光器,成功输出了1瓦特的太赫兹辐射,打破了此前由美国麻省理工学院所保持的0.25瓦特的世界纪录,成为目前世界上功率最大的太赫兹量子级联激光器。   太赫兹射线,是波长介于微波与红外之间的一种

新型紧凑太赫兹激光器可在室温下工作

   美国科学家研制出一款紧凑型、在室温下工作、能广泛调谐的太赫兹激光器,是迄今性能最优异的太赫兹激光器,首次让太赫兹激光器可广泛应用于科技领域,有望在高带宽通信、超高分辨率成像、射电天文学等领域“大显身手”。  太赫兹频率范围位于电磁频谱(介于微波和红外线之间)的中间,可广泛应用于多个科术领域,但

英国利兹大学研制出世界功率最大太赫兹激光器芯片

太赫兹辐射源是太赫兹频段应用的关键器件,而太赫兹量子级联激光器作为一种重要的太赫兹辐射源具有能量转换效率高、体积小、轻便和易集成等优点,应用前景广阔。近日,太赫兹量子级联激光器研究获得重大突破,世界功率最大的太赫兹激光器芯片问世英国。   英国利兹大学的研究人员开发出了世界上功率最大的太赫兹激光

加州大学洛杉矶分校研发首个太赫兹VCSEL激光器

在美国国家科学基金会(NSF)的资助下,加州大学洛杉矶分校(UCLA)亨利塞缪尔工程和应用科学学院研究人员已经发现了一种制备太赫兹频率半导体激光器的新方法。该课题组的论文《超材料腔表面激光器》已于近日发表在2015年最后一期《应用物理快报》期刊上(Luyao Xu et al, ’Metasurfa

国内首款太赫兹视频SAR研制成功

  从中国航天科工集团二院23所获悉,由该所成功研制的我国首款太赫兹视频SAR(合成孔径雷达),日前在陕西完成飞行试验,成功获取国内第一组太赫兹视频SAR影像成果。  太赫兹雷达成像系统能弥补光学、红外等传统雷达对慢速移动目标(如地面上的恐怖分子)探测的不足,能大大提高SAR图像可判读性,为复杂环境

新设计将太赫兹激光器功率输出提升80%

            近日,来自桑迪亚国家实验室(Sandia National Laboratories)和多伦多大学(University of Toronto)的研究小组在微型太赫兹光源方面取得突破性进展,成功将太赫兹激光器功率输出提升80%,有望在工业成像及化学检测等领域获得广泛应用

太赫兹量子级联激光器电子结构设计

未来更精确地对太赫兹QCL的能级结构及波函数分布进行模拟和设计,研究者发展了基于分区级数解法和非正基对角化方法的新型计算手段。在验证了这种新的数值算法的可靠性和普适性后,设计多种不同模式的太赫兹QCL激发区超晶格结构,用于指导实验制备相关器件及作为进一步理论研究的基础。   发展了精确求解

新型量子级联激光器输出1瓦特太赫兹辐射

 奥地利维也纳技术大学的一组研究人员制造出一种新型量子级联激光器,成功输出了1瓦特的太赫兹辐射,打破了此前由美国麻省理工学院所保持的0.25瓦特的世界纪录,成为目前世界上功率最大的太赫兹量子级联激光器。   太赫兹射线,是波长介于微波与红外之间的一种电磁辐射,由于物质的太赫兹光谱(包括透射谱和反

太赫兹量子级联激光器电子结构设计

未来更精确地对太赫兹QCL的能级结构及波函数分布进行模拟和设计,研究者发展了基于分区级数解法和非正基对角化方法的新型计算手段。在验证了这种新的数值算法的可靠性和普适性后,设计多种不同模式的太赫兹QCL激发区超晶格结构,用于指导实验制备相关器件及作为进一步理论研究的基础。  发展了精确求解电池下耦合多

半导体所制备成功太赫兹量子级联激光器

中国科学院半导体研究所半导体材料科学重点实验室、低维半导体材料与器件北京市重点实验室,在科技部、国家自然科学基金委及中科院等项目的支持下,经过努力探索,制备成功太赫兹量子级联激光器和红外量子级联激光器(QCL)系列产品系列产品。     太赫兹(THz)量子级联激光器是一种通过在半导体异质结

太赫兹量子级联激光器系列产品成功制备

  中国科学院半导体研究所半导体材料科学重点实验室、低维半导体材料与器件北京市重点实验室,在科技部、国家自然科学基金委及中科院等项目的支持下,经过努力探索,制备成功太赫兹量子级联激光器系列产品。   太赫兹(THz)量子级联激光器是一种通过在半导体异质结构材料的导带中形成电子的受激光学跃迁而产生相干